本文学习Neural Networks and Deep Learning 在线免费书籍,用python构建神经网络识别手写体的一个总结。
代码主要包括两三部分:
1)、数据调用和预处理
2)、神经网络类构建和方法建立
3)、代码测试文件
1)数据调用:
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017-03-12 15:11 # @Author : CC # @File : net_load_data.py # @Software: PyCharm Community Edition from numpy import * import numpy as np import cPickle def load_data(): """载入解压后的数据,并读取""" with open('data/mnist_pkl/mnist.pkl','rb') as f: try: train_data,validation_data,test_data = cPickle.load(f) print " the file open sucessfully" # print train_data[0].shape #(50000,784) # print train_data[1].shape #(50000,) return (train_data,validation_data,test_data) except EOFError: print 'the file open error' return None def data_transform(): """将数据转化为计算格式""" t_d,va_d,te_d = load_data() # print t_d[0].shape # (50000,784) # print te_d[0].shape # (10000,784) # print va_d[0].shape # (10000,784) # n1 = [np.reshape(x,784,1) for x in t_d[0]] # 将5万个数据分别逐个取出化成(784,1),逐个排列 n = [np.reshape(x, (784, 1)) for x in t_d[0]] # 将5万个数据分别逐个取出化成(784,1),逐个排列 # print 'n1',n1[0].shape # print 'n',n[0].shape m = [vectors(y) for y in t_d[1]] # 将5万标签(50000,1)化为(10,50000) train_data = zip(n,m) # 将数据与标签打包成元组形式 n = [np.reshape(x, (784, 1)) for x in va_d[0]] # 将5万个数据分别逐个取出化成(784,1),排列 validation_data = zip(n,va_d[1]) # 没有将标签数据矢量化 n = [np.reshape(x, (784, 1)) for x in te_d[0]] # 将5万个数据分别逐个取出化成(784,1),排列 test_data = zip(n, te_d[1]) # 没有将标签数据矢量化 # print train_data[0][0].shape #(784,) # print "len(train_data[0])",len(train_data[0]) #2 # print "len(train_data[100])",len(train_data[100]) #2 # print "len(train_data[0][0])", len(train_data[0][0]) #784 # print "train_data[0][0].shape", train_data[0][0].shape #(784,1) # print "len(train_data)", len(train_data) #50000 # print train_data[0][1].shape #(10,1) # print test_data[0][1] # 7 return (train_data,validation_data,test_data) def vectors(y): """赋予标签""" label = np.zeros((10,1)) label[y] = 1.0 #浮点计算 return label
2)网络构建
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017-03-12 16:07 # @Author : CC # @File : net_network.py import numpy as np import random class Network(object): #默认为基类""" 1) 打乱样本,将训练数据划分成小批次 2)计算出反向传播梯度 3) 获得权重更新""" if test_data: n_test = len(test_data) n = len(train_data) #50000 random.shuffle(train_data) # 打乱 min_batches = [train_data[k:k+min_batch_size] for k in xrange(0,n,min_batch_size)] #提取批次数据 for k in xrange(0,epoches): #利用更新后的权值继续更新 random.shuffle(train_data) # 打乱 for min_batch in min_batches: #逐个传入,效率很低 self.updata_parameter(min_batch,eta) if test_data: num = self.evaluate(test_data) print "the {0}th epoches: {1}/{2}".format(k,num,len(test_data)) else: print 'epoches {0} completed'.format(k) def forward(self,x): """获得各层激活值""" for w,b in zip(self.weight,self.bias): x = sigmoid(np.dot(w, x)+b) return x def updata_parameter(self,min_batch,eta): """1) 反向传播计算每个样本梯度值 2) 累加每个批次样本的梯度值 3) 权值更新""" ndeltab = [np.zeros(b.shape) for b in self.bias] ndeltaw = [np.zeros(w.shape) for w in self.weight] for x,y in min_batch: deltab,deltaw = self.backprop(x,y) ndeltab = [nb +db for nb,db in zip(ndeltab,deltab)] ndeltaw = [nw + dw for nw,dw in zip(ndeltaw,deltaw)] self.bias = [b - eta * ndb/len(min_batch) for ndb,b in zip(ndeltab,self.bias)] self.weight = [w - eta * ndw/len(min_batch) for ndw,w in zip(ndeltaw,self.weight)] def backprop(self,x,y): """执行前向计算,再进行反向传播,返回deltaw,deltab""" # [w for w in self.weight] # print 'len',len(w) # print "self.weight",self.weight[0].shape # print w[0].shape # print w[1].shape # print w.shape activation = x activations = [x] zs = [] # feedforward for w, b in zip(self.weight, self.bias): # print w.shape,activation.shape,b.shape z = np.dot(w, activation) +b zs.append(z) #用于计算f(z)导数 activation = sigmoid(z) # print 'activation',activation.shape activations.append(activation) # 每层的输出结果 delta = self.top_subtract(activations[-1],y) * dsigmoid(zs[-1]) #最后一层的delta,np.array乘,相同维度乘 deltaw = [np.zeros(w1.shape) for w1 in self.weight] #每一次将获得的值作为列表形式赋给deltaw deltab = [np.zeros(b1.shape) for b1 in self.bias] # print 'deltab[0]',deltab[-1].shape deltab[-1] = delta deltaw[-1] = np.dot(delta,activations[-2].transpose()) for k in xrange(2,self.num_layers): delta = np.dot(self.weight[-k+1].transpose(),delta) * dsigmoid(zs[-k]) deltab[-k] = delta deltaw[-k] = np.dot(delta,activations[-k-1].transpose()) return (deltab,deltaw) def evaluate(self,test_data): """评估验证集和测试集的精度,标签直接一个数作为比较""" z = [(np.argmax(self.forward(x)),y) for x,y in test_data] zs = np.sum(int(a == b) for a,b in z) # zk = sum(int(a == b) for a,b in z) # print "zs/zk:",zs,zk return zs def top_subtract(self,x,y): return (x - y) def sigmoid(x): return 1.0/(1.0+np.exp(-x)) def dsigmoid(x): z = sigmoid(x) return z*(1-z)
3)网络测试
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017-03-12 15:24 # @Author : CC # @File : net_test.py import net_load_data # net_load_data.load_data() train_data,validation_data,test_data = net_load_data.data_transform() import net_network as net net1 = net.Network([784,30,10]) min_batch_size = 10 eta = 3.0 epoches = 30 net1.SGD(train_data,min_batch_size,epoches,eta,test_data) print "complete"
4)结果
the 9th epoches: 9405/10000 the 10th epoches: 9420/10000 the 11th epoches: 9385/10000 the 12th epoches: 9404/10000 the 13th epoches: 9398/10000 the 14th epoches: 9406/10000 the 15th epoches: 9396/10000 the 16th epoches: 9413/10000 the 17th epoches: 9405/10000 the 18th epoches: 9425/10000 the 19th epoches: 9420/10000
总体来说这本书的实例,用来熟悉python和神经网络非常好。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
标签:
python,神经网络,DNN
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“python构建深度神经网络(DNN)”评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
2024年11月26日
2024年11月26日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]