近来想要做一做人脸识别相关的内容,主要是想集成一个系统,看到opencv已经集成了三种性能较好的算法,但是还是想自己动手试一下,毕竟算法都比较初级。
操作环境:python2.7
第三方库:opencv for python、numpy
第一种比较经典的算法就是特征脸法,本质上其实就是PCA降维,这种算法的基本思路是,把二维的图像先灰度化,转化为一通道的图像,之后再把它首尾相接转化为一个列向量,假设图像大小是20*20的,那么这个向量就是400维,理论上讲组织成一个向量,就可以应用任何机器学习算法了,但是维度太高算法复杂度也会随之升高,所以需要使用PCA算法降维,然后使用简单排序或者KNN都可以。
只当搬运工,送上链接。
PCA ,这篇博客讲得非常好了,从原理到实现基本看这个就能搞出来了:PCA的数学原理
特征脸法:PCA应用在人脸识别当中:人脸识别经典算法一:特征脸方法(Eigenface) ,这里与PCA有不同的操作就是特征值分解的时候,由于图像组成的列向量维度太高,直接按照PCA算法求解会很慢,所以这里有一种特殊的处理方法。
数据组织形式为若干样本图片分类放入对应文件夹中,然后在统一存放入face文件夹下,测试图像单独一张图像即可。
另外,由于PCA中维度是一个很麻烦的事情,所以在程序中,我打印了很多维度信息,有助于我们理解PCA的工作过程和调试。
代码如下:
#encoding=utf-8 import numpy as np import cv2 import os class EigenFace(object): def __init__(self,threshold,dimNum,dsize): self.threshold = threshold # 阈值暂未使用 self.dimNum = dimNum self.dsize = dsize def loadImg(self,fileName,dsize): ''''' 载入图像,灰度化处理,统一尺寸,直方图均衡化 :param fileName: 图像文件名 :param dsize: 统一尺寸大小。元组形式 :return: 图像矩阵 ''' img = cv2.imread(fileName) retImg = cv2.resize(img,dsize) retImg = cv2.cvtColor(retImg,cv2.COLOR_RGB2GRAY) retImg = cv2.equalizeHist(retImg) # cv2.imshow('img',retImg) # cv2.waitKey() return retImg def createImgMat(self,dirName): ''''' 生成图像样本矩阵,组织形式为行为属性,列为样本 :param dirName: 包含训练数据集的图像文件夹路径 :return: 样本矩阵,标签矩阵 ''' dataMat = np.zeros((10,1)) label = [] for parent,dirnames,filenames in os.walk(dirName): # print parent # print dirnames # print filenames index = 0 for dirname in dirnames: for subParent,subDirName,subFilenames in os.walk(parent+'/'+dirname): for filename in subFilenames: img = self.loadImg(subParent+'/'+filename,self.dsize) tempImg = np.reshape(img,(-1,1)) if index == 0 : dataMat = tempImg else: dataMat = np.column_stack((dataMat,tempImg)) label.append(subParent+'/'+filename) index += 1 return dataMat,label def PCA(self,dataMat,dimNum): ''''' PCA函数,用于数据降维 :param dataMat: 样本矩阵 :param dimNum: 降维后的目标维度 :return: 降维后的样本矩阵和变换矩阵 ''' # 均值化矩阵 meanMat = np.mat(np.mean(dataMat,1)).T print '平均值矩阵维度',meanMat.shape diffMat = dataMat-meanMat # 求协方差矩阵,由于样本维度远远大于样本数目,所以不直接求协方差矩阵,采用下面的方法 covMat = (diffMat.T*diffMat)/float(diffMat.shape[1]) # 归一化 #covMat2 = np.cov(dataMat,bias=True) #print '基本方法计算协方差矩阵为',covMat2 print '协方差矩阵维度',covMat.shape eigVals, eigVects = np.linalg.eig(np.mat(covMat)) print '特征向量维度',eigVects.shape print '特征值',eigVals eigVects = diffMat*eigVects eigValInd = np.argsort(eigVals) eigValInd = eigValInd[::-1] eigValInd = eigValInd[:dimNum] # 取出指定个数的前n大的特征值 print '选取的特征值',eigValInd eigVects = eigVects/np.linalg.norm(eigVects,axis=0) #归一化特征向量 redEigVects = eigVects[:,eigValInd] print '选取的特征向量',redEigVects.shape print '均值矩阵维度',diffMat.shape lowMat = redEigVects.T*diffMat print '低维矩阵维度',lowMat.shape return lowMat,redEigVects def compare(self,dataMat,testImg,label): ''''' 比较函数,这里只是用了最简单的欧氏距离比较,还可以使用KNN等方法,如需修改修改此处即可 :param dataMat: 样本矩阵 :param testImg: 测试图像矩阵,最原始形式 :param label: 标签矩阵 :return: 与测试图片最相近的图像文件名 ''' testImg = cv2.resize(testImg,self.dsize) testImg = cv2.cvtColor(testImg,cv2.COLOR_RGB2GRAY) testImg = np.reshape(testImg,(-1,1)) lowMat,redVects = self.PCA(dataMat,self.dimNum) testImg = redVects.T*testImg print '检测样本变换后的维度',testImg.shape disList = [] testVec = np.reshape(testImg,(1,-1)) for sample in lowMat.T: disList.append(np.linalg.norm(testVec-sample)) print disList sortIndex = np.argsort(disList) return label[sortIndex[0]] def predict(self,dirName,testFileName): ''''' 预测函数 :param dirName: 包含训练数据集的文件夹路径 :param testFileName: 测试图像文件名 :return: 预测结果 ''' testImg = cv2.imread(testFileName) dataMat,label = self.createImgMat(dirName) print '加载图片标签',label ans = self.compare(dataMat,testImg,label) return ans if __name__ == '__main__': eigenface = EigenFace(20,50,(50,50)) print eigenface.predict('d:/face','D:/face_test/1.bmp')
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
python,人脸识别
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]