本文实例讲述了Python找出序列中出现次数最多的元素。分享给大家供大家参考,具体如下:

问题:找出一个元素序列中出现次数最多的元素是什么

解决方案:collections模块中的Counter类正是为此类问题所设计的。它的一个非常方便的most_common()方法直接告诉你答案。

# Determine the most common words in a list
words = [
  'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes',
  'the', 'eyes', 'the', 'eyes', 'the', 'eyes', 'not', 'around', 'the',
  'eyes', "don't", 'look', 'around', 'the', 'eyes', 'look', 'into',
  'my', 'eyes', "you're", 'under'
]
from collections import Counter
word_counts = Counter(words)
top_three = word_counts.most_common(3)
print(top_three)
# outputs [('eyes', 8), ('the', 5), ('look', 4)]
# Example of merging in more words
morewords = ['why','are','you','not','looking','in','my','eyes']
word_counts.update(morewords) #使用update()增加计数
print(word_counts.most_common(3))

> ================================ RESTART ================================
>
[('eyes', 8), ('the', 5), ('look', 4)]
[('eyes', 9), ('the', 5), ('my', 4)]
>

在底层实现中,Counter是一个字典,在元素和它们出现的次数间做了映射。

> word_counts
Counter({'eyes': 9, 'the': 5, 'my': 4, 'look': 4, 'into': 3, 'around': 2, 'not': 2, "don't": 1, 'under': 1, 'are': 1, 'looking': 1, "you're": 1, 'you': 1, 'why': 1, 'in': 1})
> word_counts.most_common(3) #top_three
[('eyes', 9), ('the', 5), ('my', 4)]
> word_counts['not']
2
> word_counts['eyes']
9
> word_counts['eyes']+1
10
> word_counts
Counter({'eyes': 9, 'the': 5, 'my': 4, 'look': 4, 'into': 3, 'around': 2, 'not': 2, "don't": 1, 'under': 1, 'are': 1, 'looking': 1, "you're": 1, 'you': 1, 'why': 1, 'in': 1})
> word_counts['eyes']=word_counts['eyes']+1 #手动增加元素计数
> word_counts
Counter({'eyes': 10, 'the': 5, 'my': 4, 'look': 4, 'into': 3, 'around': 2, 'not': 2, "don't": 1, 'under': 1, 'are': 1, 'looking': 1, "you're": 1, 'you': 1, 'why': 1, 'in': 1})
>

增加元素出现次数可以通过手动进行增加,也可以借助update()方法;

另外,Counter对象另一个特性是它们可以同各种数学运算操作结合起来使用:

> a=Counter(words)
> a
Counter({'eyes': 8, 'the': 5, 'look': 4, 'my': 3, 'into': 3, 'around': 2, 'under': 1, "you're": 1, 'not': 1, "don't": 1})
> b=Counter(morewords)
> b
Counter({'not': 1, 'my': 1, 'in': 1, 'you': 1, 'looking': 1, 'are': 1, 'eyes': 1, 'why': 1})
> c=a+b
> c
Counter({'eyes': 9, 'the': 5, 'my': 4, 'look': 4, 'into': 3, 'around': 2, 'not': 2, "don't": 1, 'under': 1, 'are': 1, 'looking': 1, "you're": 1, 'you': 1, 'in': 1, 'why': 1})
> # substract counts
> d=a-b
> d
Counter({'eyes': 7, 'the': 5, 'look': 4, 'into': 3, 'my': 2, 'around': 2, 'under': 1, "you're": 1, "don't": 1})
>

当面对任何需要对数据制表或计数的问题时,Counter对象都是你手边的得力工具。比起利用字典自己手写算法,更应采用该方式完成任务。

(代码摘自《Python Cookbook》)

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

标签:
Python,cookbook,数据结构与算法,找出,序列,出现次数最多,元素,算法

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?