mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的。但是CNN层数要多一些,网络模型需要自己来构建。
程序比较复杂,我就分成几个部分来叙述。
首先,下载并加载数据:
import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #下载并加载mnist数据 x = tf.placeholder(tf.float32, [None, 784]) #输入的数据占位符 y_actual = tf.placeholder(tf.float32, shape=[None, 10]) #输入的标签占位符
定义四个函数,分别用于初始化权值W,初始化偏置项b, 构建卷积层和构建池化层。
#定义一个函数,用于初始化所有的权值 W def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) #定义一个函数,用于初始化所有的偏置项 b def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) #定义一个函数,用于构建卷积层 def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') #定义一个函数,用于构建池化层 def max_pool(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
接下来构建网络。整个网络由两个卷积层(包含激活层和池化层),一个全连接层,一个dropout层和一个softmax层组成。
#构建网络 x_image = tf.reshape(x, [-1,28,28,1]) #转换输入数据shape,以便于用于网络中 W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) #第一个卷积层 h_pool1 = max_pool(h_conv1) #第一个池化层 W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) #第二个卷积层 h_pool2 = max_pool(h_conv2) #第二个池化层 W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) #reshape成向量 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #第一个全连接层 keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #dropout层 W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #softmax层
网络构建好后,就可以开始训练了。
cross_entropy = -tf.reduce_sum(y_actual*tf.log(y_predict)) #交叉熵 train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy) #梯度下降法 correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #精确度计算 sess=tf.InteractiveSession() sess.run(tf.initialize_all_variables()) for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: #训练100次,验证一次 train_acc = accuracy.eval(feed_dict={x:batch[0], y_actual: batch[1], keep_prob: 1.0}) print 'step %d, training accuracy %g'%(i,train_acc) train_step.run(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 0.5}) test_acc=accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0}) print "test accuracy %g"%test_acc
Tensorflow依赖于一个高效的C++后端来进行计算。与后端的这个连接叫做session。一般而言,使用TensorFlow程序的流程是先创建一个图,然后在session中启动它。
这里,我们使用更加方便的InteractiveSession类。通过它,你可以更加灵活地构建你的代码。它能让你在运行图的时候,插入一些计算图,这些计算图是由某些操作(operations)构成的。这对于工作在交互式环境中的人们来说非常便利,比如使用IPython。
训练20000次后,再进行测试,测试精度可以达到99%。
完整代码:
# -*- coding: utf-8 -*- """ Created on Thu Sep 8 15:29:48 2016 @author: root """ import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #下载并加载mnist数据 x = tf.placeholder(tf.float32, [None, 784]) #输入的数据占位符 y_actual = tf.placeholder(tf.float32, shape=[None, 10]) #输入的标签占位符 #定义一个函数,用于初始化所有的权值 W def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) #定义一个函数,用于初始化所有的偏置项 b def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) #定义一个函数,用于构建卷积层 def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') #定义一个函数,用于构建池化层 def max_pool(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME') #构建网络 x_image = tf.reshape(x, [-1,28,28,1]) #转换输入数据shape,以便于用于网络中 W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) #第一个卷积层 h_pool1 = max_pool(h_conv1) #第一个池化层 W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) #第二个卷积层 h_pool2 = max_pool(h_conv2) #第二个池化层 W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) #reshape成向量 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #第一个全连接层 keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #dropout层 W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #softmax层 cross_entropy = -tf.reduce_sum(y_actual*tf.log(y_predict)) #交叉熵 train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy) #梯度下降法 correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #精确度计算 sess=tf.InteractiveSession() sess.run(tf.initialize_all_variables()) for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: #训练100次,验证一次 train_acc = accuracy.eval(feed_dict={x:batch[0], y_actual: batch[1], keep_prob: 1.0}) print('step',i,'training accuracy',train_acc) train_step.run(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 0.5}) test_acc=accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0}) print("test accuracy",test_acc)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“tensorflow学习笔记之mnist的卷积神经网络实例”评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
2024年11月26日
2024年11月26日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]