在进行数据分析、数据建模时,我们首先要做的就是对数据进行处理,提取我们需要的信息。下面为大家介绍一些groupby的用法,以便能够更加方便地进行数据处理。
我们往往在使用groupby进行信息提取时,往往是求分组后样本的一些统计量(max、min,var等)。如果现在我们希望取一下分组后样本的第二条记录,倒数第三条记录,这个该如何操作呢?我们可以通过first、last来提取分组后第一条和最后一条样本。但如果我们要取指定位置的样本,就没有现成的函数。需要我们自己去写了。下面我就为大家介绍如何实现上面的功能。
1)数据介绍
action表共有3列:userid、actionType和actionTime,分别代表用户id,用户行为类型和行为发生时间。具体格式如下图所示:
2)分组操作
a = action.groupby('userid')
b = action.groupby('userid')['actionTime']
type(a)
type(b)
分组后我们可以看到a和b的数据类型是DataFrameGroupBy和SeriesGroupBy
3)取数操作
①不同用户第二次/倒数第二次操作时间
action.groupby('userid')['actionTime'].apply(lambda i:i.iloc[1] if len(i)>1 else np.nan)
action.groupby('userid')['actionTime'].apply(lambda i:i.iloc[-2] if len(i)>1 else np.nan)
②不同用户某种行为第二次/倒数第二次操作时间
action[action['actionType']==2].groupby('userid')['actionTime'].apply(lambda i:i.iloc[1] if len(i)>1 else np.nan)
action[action['actionType']==2].groupby('userid')['actionTime'].apply(lambda i:i.iloc[-2] if len(i)>1 else np.nan)
PS:因为有些用户可能只有一条记录,直接取可能会出错,所以我用if先做判断。
这样我们就可以提取分组后数据任意位置的样本了。
以上这篇Python在groupby分组后提取指定位置记录方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
groupby分组,提取指定位置
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新动态
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]

