参加kaggle数据挖掘比赛,就第一个赛题Titanic的数据,学习相关数据预处理以及模型建立,本博客关注基于pandas进行数据预处理过程。包括数据统计、数据离散化、数据关联性分析
引入包和加载数据
import pandas as pd import numpy as np train_df =pd.read_csv('../datas/train.csv') # train set test_df = pd.read_csv('../datas/test.csv') # test set combine = [train_df, test_df]
清洗数据
查看数据维度以及类型
缺失值处理
查看object数据统计信息
数值属性离散化
计算特征与target属性之间关系
查看数据维度以及类型
#查看前五条数据 print train_df.head(5) #查看每列数据类型以及nan情况 print train_df.info() # 获得所有object属性 print train_data.describe(include=['O']).columns
查看object数据统计信息
#查看连续数值属性基本统计情况 print train_df.describe() #查看object属性数据统计情况 print train_df.describe(include=['O']) # 统计Title单列各个元素对应的个数 print train_df['Title'].value_counts() # 属性列删除 train_df = train_df.drop(['Name', 'PassengerId'], axis=1)
缺失值处理
# 直接丢弃缺失数据列的行 print df4.dropna(axis=0,subset=['col1']) # 丢弃nan的行,subset指定查看哪几列 print df4.dropna(axis=1) # 丢弃nan的列 # 采用其他值填充 dataset['Cabin'] = dataset['Cabin'].fillna('U') dataset['Title'] = dataset['Title'].fillna(0) # 采用出现最频繁的值填充 freq_port = train_df.Embarked.dropna().mode()[0] dataset['Embarked'] = dataset['Embarked'].fillna(freq_port) # 采用中位数或者平均数填充 test_df['Fare'].fillna(test_df['Fare'].dropna().median(), inplace=True) test_df['Fare'].fillna(test_df['Fare'].dropna().mean(), inplace=True)
数值属性离散化,object属性数值化
# 创造一个新列,FareBand,将连续属性Fare切分成四份 train_df['FareBand'] = pd.qcut(train_df['Fare'], 4) # 查看切分后的属性与target属性Survive的关系 train_df[['FareBand', 'Survived']].groupby(['FareBand'], as_index=False).mean().sort_values(by='FareBand', ascending=True) # 建立object属性映射字典 title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Royalty":5, "Officer": 6} dataset['Title'] = dataset['Title'].map(title_mapping)
计算特征与target属性之间关系
object与连续target属性之间,可以groupby均值
object与离散target属性之间,先将target数值化,然后groupby均值,或者分别条形统计图
连续属性需要先切割然后再进行groupby计算,或者pearson相关系数
print train_df[['AgeBand', 'Survived']].groupby(['AgeBand'], as_index=False).mean().sort_values(by='AgeBand', ascending=True)
总结pandas基本操作
”' 创建df对象 ””' s1 = pd.Series([1,2,3,np.nan,4,5]) s2 = pd.Series([np.nan,1,2,3,4,5]) print s1 dates = pd.date_range(“20130101”,periods=6) print dates df = pd.DataFrame(np.random.rand(6,4),index=dates,columns=list(“ABCD”)) # print df df2 = pd.DataFrame({“A”:1, ‘B':pd.Timestamp(‘20130102'), ‘C':pd.Series(1,index=list(range(4)),dtype='float32'), ‘D':np.array([3]*4,dtype=np.int32), ‘E':pd.Categorical([‘test','train','test','train']), ‘F':'foo' }) # print df2.dtypes
df3 = pd.DataFrame({'col1':s1, 'col2':s2 }) print df3 ''' 2.查看df数据 ''' print df3.head(2) #查看头几条 print df3.tail(3) #查看尾几条 print df.index #查看索引 print df.info() #查看非non数据条数 print type(df.values) #返回二元数组 # print df3.values print df.describe() #对每列数据进行初步的统计 print df3 print df3.sort_values(by=['col1'],axis=0,ascending=True) #按照哪几列排序 ''' 3.选择数据 ''' ser_1 = df3['col1'] print type(ser_1) #pandas.core.series.Series print df3[0:2] #前三行 print df3.loc[df3.index[0]] #通过index来访问 print df3.loc[df3.index[0],['col2']] #通过行index,和列名来唯一确定一个位置 print df3.iloc[1] #通过位置来访问 print df3.iloc[[1,2],1:2] #通过位置来访问 print "===" print df3.loc[:,['col1','col2']].as_matrix() # 返回nunpy二元数组 print type(df3.loc[:,['col1','col2']].as_matrix()) ''' 4.布尔索引,过滤数据 ''' print df3[df3.col1 >2] df4 = df3.copy() df4['col3']=pd.Series(['one','two','two','three','one','two']) print df4 print df4[df4['col3'].isin(['one','two'])] df4.loc[:,'col3']="five" print df4 ''' 5.缺失值处理,pandas将缺失值用nan代替 ''' print pd.isnull(df4) print df4.dropna(axis=0,subset=['col1']) # 丢弃nan的行,subset指定查看哪几列 print df4.dropna(axis=1) # 丢弃nan的列
以上这篇对pandas进行数据预处理的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
pandas,数据预处理
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“对pandas进行数据预处理的实例讲解”评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
2024年11月26日
2024年11月26日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]