1、处理包含数据的文件
最近利用Python读取txt文件时遇到了一个小问题,就是在计算两个np.narray()类型的数组时,出现了以下错误:
TypeError: ufunc 'subtract' did not contain a loop with signature matching types dtype('<U3') dtype('<U3') dtype('<U3')
作为一个Python新手,遇到这个问题后花费了挺多时间,在网上找了许多大神们写的例子,最后终于解决了。
总结如下:
(1)出现此问题的原因是:目的是想计算两个数组间的差值,但数组中的元素不是数据类型(float或int等),而是str类型的。
(2)解决方法:在为空数组添加数据过程中,将每个数据强制转化为float型。
如将“character.append(dataSet[i][:-1])”修改为“ character.append([float(tk) for tk in dataSet[i][:-1]])”
现将利用Python读取txt文件的过程总结如下:
python版本为python3.6
(1)函数定义,存放于Function.py文件中:
from numpy import * import random #读取数据函数,返回list类型的训练数据集和测试数据集 def loadData(fileName): trainingData=[] testData=[] with open(fileName) as txtData: lines=txtData.readlines() for line in lines: lineData=line.strip().split(',') #去除空白和逗号“,” if random.random()<0.7: #数据集分割比例 trainingData.append(lineData) #训练数据集 else: testData.append(lineData) #测试数据集 return trainingData,testData #输入数据为list类型,分割数据集,分割为特征和标签两部分,返回数据为np.narray类型 def splitData(dataSet): character=[] label=[] for i in range(len(dataSet)): character.append([float(tk) for tk in dataSet[i][:-1]]) label.append(dataSet[i][-1]) return array(character),array(label)
(2)实现两个数组间的减法,存放于main.py文件中:
#__author__=='qustl_000' #-*- coding: utf-8 -*- import numpy as np import Function fileName="1.txt" trainingData,testData=Function.loadData(fileName) trainingCharacter,trainingLabel=Function.splitData(trainingData) testCharacter,testLabel=Function.splitData(testData) diff1=np.tile(testCharacter[0],(len(trainingCharacter),1))-trainingCharacter print('测试数据集的一条数据,扩充到与训练数据集同维:') print(np.tile(testCharacter[0],(len(trainingCharacter),1))) print('训练数据集:') print(trainingCharacter) print('作差后的结果:') print(diff1)
(3)运行结果:
测试数据集的一条数据,扩充到与训练数据集同维: [[ 1.5 60. ] [ 1.5 60. ] [ 1.5 60. ] [ 1.5 60. ] [ 1.5 60. ] [ 1.5 60. ] [ 1.5 60. ] [ 1.5 60. ] [ 1.5 60. ] [ 1.5 60. ] [ 1.5 60. ] [ 1.5 60. ] [ 1.5 60. ]] 训练数据集: [[ 1.5 40. ] [ 1.5 50. ] [ 1.6 40. ] [ 1.6 50. ] [ 1.6 60. ] [ 1.6 70. ] [ 1.7 60. ] [ 1.7 70. ] [ 1.7 80. ] [ 1.8 60. ] [ 1.8 80. ] [ 1.8 90. ] [ 1.9 90. ]] 作差后的结果: [[ 0. 20. ] [ 0. 10. ] [ -0.1 20. ] [ -0.1 10. ] [ -0.1 0. ] [ -0.1 -10. ] [ -0.2 0. ] [ -0.2 -10. ] [ -0.2 -20. ] [ -0.3 0. ] [ -0.3 -20. ] [ -0.3 -30. ] [ -0.4 -30. ]]
数据集如下:
1.5,40,thin 1.5,50,fat 1.5,60,fat 1.6,40,thin 1.6,50,thin 1.6,60,fat 1.6,70,fat 1.7,50,thin 1.7,60,thin 1.7,70,fat 1.7,80,fat 1.8,60,thin 1.8,70,thin 1.8,80,fat 1.8,90,fat 1.9,80,thin 1.9,90,fat
2、处理文本文件,如情感识别类的文件
在进行文本的情感分类时,从电影评论数据集网站上下载数据集后,发现数据集中存在许多不需要的符号。截取部分包含多余字符的数据如下:
下载数据集后,所有txt文件存放在两个文件夹:“neg”(包含消极评论)和“pos”(包含积极地评论)中。
两者的存放目录如下:“F:\Self_Learning\机器学习\python\Bayes\review_polarity\txt_sentoken”。后面需要用到文件路径,此路径可根据自己存放目录修改。
主要涉及到的python操作有:多余字符的删除、文件夹中多文件的操作。
2.1 多余字符的删除
首先,我们要删除多余的符号,获得干净的数据。
经过查找资料,知道删除一条文本数据中不需要的符号,可以通过re.sub(chara,newChara,data)函数实现,其中chara是需要删除的字符,newChara是删除字符后相应位置的替换字符,data是需要操作的数据。比如下面的代码,指的是删除lines中包含的前面列出的字符,并用空白替换:
lineString = re.sub("[\n\.\!\/_\-$%^*(+\"\')]+|[+—()", " ", lines)
2.2 python对多文件的操作
下面的程序中,pathDirPos指的是所有积极评论的txt文件所在的目录,在此指的是“F:\Self_Learning\机器学习\python\Bayes\review_polarity\txt_sentoken\pos”。child就是获得的每个txt文件全名。
for allDir in pathDirPos: child = os.path.join('%s' % allDir)
2.3 电影评论数据集预处理
下面给出对于电影评论数据集的预处理程序(python3.6).
'''获取数据,并去除数据中的多余符号,返回list类型的数据集''' def loadData(pathDirPos,pathDirNeg): posAllData = [] # 积极评论 negAllData = [] # 消极评论 # 积极评论 for allDir in pathDirPos: lineDataPos = [] child = os.path.join('%s' % allDir) filename = r"review_polarity/txt_sentoken/pos/" + child with open(filename) as childFile: for lines in childFile: lineString = re.sub("[\n\.\!\/_\-$%^*(+\"\')]+|[+—()", " ", lines) line = lineString.split(' ') #用空白分割每个文件中的数据集(此时还包含许多空白字符) for strc in line: if strc != "" and len(strc) > 1: #删除空白字符,并筛选出长度大于1的单词 lineDataPos.append(strc) posAllData.append(lineDataPos) # 消极评论 for allDir in pathDirNeg: lineDataNeg = [] child = os.path.join('%s' % allDir) filename = r"review_polarity/txt_sentoken/neg/" + child with open(filename) as childFile: for lines in childFile: lineString = re.sub("[\n\.\!\/_\-$%^*(+\"\')]+|[+—()", " ", lines) line = lineString.split(' ') #用空白分割每个文件中的数据集(此时还包含许多空白字符) for strc in line: if strc != "" and len(strc) > 1: #删除空白字符,并筛选出长度大于1的单词 lineDataNeg.append(strc) negAllData.append(lineDataNeg) return posAllData,negAllData '''划分数据集,将数据集划分为训练数据和测试数据,参数splitPara为分割比例''' def splitDataSet(pathDirPos,pathDirNeg,splitPara): trainingData=[] testData=[] traingLabel=[] testLabel=[] posData,negData=loadData(pathDirPos,pathDirNeg) pos_len=len(posData) neg_len=len(negData) #操作积极评论数据 for i in range(pos_len): if(random.random()<splitPara): trainingData.append(posData[i]) traingLabel.append(1) else: testData.append(posData[i]) testLabel.append(1) for j in range(neg_len): if(random.random()<splitPara): trainingData.append(negData[j]) traingLabel.append(0) else: testData.append(negData[j]) testLabel.append(0) return trainingData,traingLabel,testData,testLabel
以上这篇对python .txt文件读取及数据处理方法总结就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
python读取txt文件
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]