最近在折腾验证码识别。最终的脚本的识别率在92%左右,9000张验证码大概能识别出八千三四百张左右。好吧,其实是验证码太简单。下面就是要识别的验证码。

python脚本实现验证码识别 python脚本实现验证码识别

我主要用的是Python中的PIL库。

首先进行二值化处理。由于图片中的噪点颜色比较浅,所以可以设定一个阈值直接过滤掉。这里我设置的阈值是150,像素大于150的赋值为1,小于的赋为0.

def set_table(a):
  table = []     
  for i in range(256):
    if i < a:
      table.append(0)
    else:
      table.append(1)
  return table

img = Image.open("D:/python/单个字体/A"+str(i)+".jpg")
pix = img.load()

#将图片进行灰度化处理
img1 = img.convert('L')

#阈值为150,参数为1,将图片进行二值化处理
img2 = img1.point(set_table(150),'1') 

处理后的图片如下。

python脚本实现验证码识别

阈值不同产生的不同效果:

python脚本实现验证码识别

接下来对图片进行分割。遍历图片中所有像素点,计算每一列像素为0的点的个数(jd)。对于相邻两列,若其中一列jd=0,而另一列jd!=0,则可以认为这一列是验证码中字符边界,由此对验证码进行分割。这样分割能达到比较好的效果,分割后得到的字符图片几乎能与模板完全相同。

(Width,Height) = img2.size
pix2 = img2.load()
x0 = []
y0 = []

for x in range(1,Width):
  jd = 0
  # print x
  for y in range(1,Height):
    # print y
    if pix2[x,y] == 0:
      jd+=1
  y0.append(jd)
  if jd > 0:
    x0.append(x)

#分别对各个字符边界进行判断,这里只举出一个    
for a in range(1,Width):
  if (y0[a] != 0)&(y0[a+1] != 0):
    sta1 = a+1
    break

分割完成后,对于识别,目前有几种方法。可以遍历图片的每一个像素点,获取像素值,得到一个字符串,将该字符串与模板的字符串进行比较,计算汉明距离或者编辑距离(即两个字符串的差异度),可用Python-Levenshtein库来实现。

我采用的是比较特征向量来进行识别的。首先设定了4个竖直特征向量,分别计算第0、2、4、6列每一列像素值为0的点的个数,与模板进行比较,若小于阈值则认为该字符与模板相同。为了提高识别率,如果通过竖直特征向量未能识别成功,引入水平特征向量继续识别,原理与竖直特征向量相同。

另外,还可以通过局部特征进行识别。这对于加入了旋转干扰的验证码有很好效果。由于我写的脚本识别率已经达到了要求,所以并没有用到这个。

最后的结果是这样的:

python脚本实现验证码识别

最终在模板库只有25条的情况下,识别率在92%左右(总共测试了一万六千张验证码)。好吧,只能说验证码太简单。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
python,验证码,识别

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“python脚本实现验证码识别”
暂无“python脚本实现验证码识别”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。