numpy是无法直接判断出由数值与字符混合组成的数组中的数值型数据的,因为由数值类型和字符类型组成的numpy数组已经不是数值类型的数组了,而是dtype='<U11'。

1、math.isnan也不行,它只能判断float("nan"):

> import math 
> math.isnan(1) 
False 
> math.isnan('a') 
Traceback (most recent call last): 
 File "<stdin>", line 1, in <module> 
TypeError: a float is required 
> math.isnan(float("nan")) 
True 
> 

2、np.isnan不可用,因为np.isnan只能用于数值型与np.nan组成的numpy数组:

> import numpy as np 
> test1=np.array([1,2,'aa',3]) 
> np.isnan(test1) 
Traceback (most recent call last): 
 File "<stdin>", line 1, in <module> 
TypeError: ufunc 'isnan' not supported for the input types, and the inputs could 
 not be safely coerced to any supported types according to the casting rule ''sa 
fe'' 
> test2=np.array([1,2,np.nan,3]) 
> np.isnan(test2) 
array([False, False, True, False], dtype=bool) 
> 

解决办法:

方法1:将numpy数组转换为python的list,然后通过filter过滤出数值型的值,再转为numpy, 但是,有一个严重的问题,无法保证原来的索引

> import numpy as np 
> test1=np.array([1,2,'aa',3]) 
> list1=list(test1) 
> def filter_fun(x): 
... try: 
...  return isinstance(float(x),(float)) 
... except: 
...  return False 
... 
> list(filter(filter_fun,list1)) 
['1', '2', '3'] 
> np.array(filter(filter_fun,list1)) 
array(<filter object at 0x0339CA30>, dtype=object) 
> np.array(list(filter(filter_fun,list1))) 
array(['1', '2', '3'], 
 dtype='<U1') 
> np.array([float(x) for x in filter(filter_fun,list1)]) 
array([ 1., 2., 3.]) 
> 

方法2:利用map制作bool数组,然后再过滤数据和索引:

> import numpy as np
> test1=np.array([1,2,'aa',3])
> list1=list(test1)
> def filter_fun(x):
... try:
...  return isinstance(float(x),(float))
... except:
...  return False
...
> import pandas as pd
> test=pd.DataFrame(test1,index=[1,2,3,4])
> test
 0
1 1
2 2
3 aa
4 3
> index=test.index
> index
Int64Index([1, 2, 3, 4], dtype='int64')
> bool_index=map(filter_fun,list1)
> bool_index=list(bool_index) #bool_index这样的迭代结果只能list一次,一次再list时会是空,所以保存一下list的结果
> bool_index
[True, True, False, True]
> new_data=test1[np.array(bool_index)]
> new_data
array(['1', '2', '3'],
 dtype='<U11')
> new_index=index[np.array(bool_index)]
> new_index
Int64Index([1, 2, 4], dtype='int64')
> test2=pd.DataFrame(new_data,index=new_index)
> test2
 0
1 1
2 2
4 3
>

以上这篇numpy判断数值类型、过滤出数值型数据的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
numpy,数值类型

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?