Summary

主要包括以下三种途径:

使用独立的函数;

使用torch.type()函数;

使用type_as(tesnor)将张量转换为给定类型的张量。

使用独立函数

import torch

tensor = torch.randn(3, 5)
print(tensor)

# torch.long() 将tensor投射为long类型
long_tensor = tensor.long()
print(long_tensor)

# torch.half()将tensor投射为半精度浮点类型
half_tensor = tensor.half()
print(half_tensor)

# torch.int()将该tensor投射为int类型
int_tensor = tensor.int()
print(int_tensor)

# torch.double()将该tensor投射为double类型
double_tensor = tensor.double()
print(double_tensor)

# torch.float()将该tensor投射为float类型
float_tensor = tensor.float()
print(float_tensor)

# torch.char()将该tensor投射为char类型
char_tensor = tensor.char()
print(char_tensor)

# torch.byte()将该tensor投射为byte类型
byte_tensor = tensor.byte()
print(byte_tensor)

# torch.short()将该tensor投射为short类型
short_tensor = tensor.short()
print(short_tensor)
-0.5841 -1.6370 0.1353 0.6334 -3.0761
-0.2628 0.1245 0.8626 0.4095 -0.3633
 1.3605 0.5055 -2.0090 0.8933 -0.6267
[torch.FloatTensor of size 3x5]


 0 -1 0 0 -3
 0 0 0 0 0
 1 0 -2 0 0
[torch.LongTensor of size 3x5]


-0.5840 -1.6367 0.1353 0.6333 -3.0762
-0.2627 0.1245 0.8628 0.4094 -0.3633
 1.3604 0.5054 -2.0098 0.8936 -0.6265
[torch.HalfTensor of size 3x5]


 0 -1 0 0 -3
 0 0 0 0 0
 1 0 -2 0 0
[torch.IntTensor of size 3x5]


-0.5841 -1.6370 0.1353 0.6334 -3.0761
-0.2628 0.1245 0.8626 0.4095 -0.3633
 1.3605 0.5055 -2.0090 0.8933 -0.6267
[torch.DoubleTensor of size 3x5]


-0.5841 -1.6370 0.1353 0.6334 -3.0761
-0.2628 0.1245 0.8626 0.4095 -0.3633
 1.3605 0.5055 -2.0090 0.8933 -0.6267
[torch.FloatTensor of size 3x5]


 0 -1 0 0 -3
 0 0 0 0 0
 1 0 -2 0 0
[torch.CharTensor of size 3x5]


 0 255 0 0 253
 0 0 0 0 0
 1 0 254 0 0
[torch.ByteTensor of size 3x5]


 0 -1 0 0 -3
 0 0 0 0 0
 1 0 -2 0 0
[torch.ShortTensor of size 3x5]

其中,torch.Tensor、torch.rand、torch.randn 均默认生成 torch.FloatTensor型 :

import torch

tensor = torch.Tensor(3, 5)
assert isinstance(tensor, torch.FloatTensor)

tensor = torch.rand(3, 5)
assert isinstance(tensor, torch.FloatTensor)

tensor = torch.randn(3, 5)
assert isinstance(tensor, torch.FloatTensor)

使用torch.type()函数

type(new_type=None, async=False)
import torch

tensor = torch.randn(3, 5)
print(tensor)

int_tensor = tensor.type(torch.IntTensor)
print(int_tensor)
-0.4449 0.0332 0.5187 0.1271 2.2303
 1.3961 -0.1542 0.8498 -0.3438 -0.2834
-0.5554 0.1684 1.5216 2.4527 0.0379
[torch.FloatTensor of size 3x5]


 0 0 0 0 2
 1 0 0 0 0
 0 0 1 2 0
[torch.IntTensor of size 3x5]

使用type_as(tesnor)将张量转换为给定类型的张量

import torch

tensor_1 = torch.FloatTensor(5)

tensor_2 = torch.IntTensor([10, 20])
tensor_1 = tensor_1.type_as(tensor_2)
assert isinstance(tensor_1, torch.IntTensor)

以上这篇pytorch: tensor类型的构建与相互转换实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
pytorch,tensor,转换

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“pytorch: tensor类型的构建与相互转换实例”
暂无“pytorch: tensor类型的构建与相互转换实例”评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?