Tensorflow 提供了7种不同的初始化函数:

tf.constant_initializer(value) #将变量初始化为给定的常量,初始化一切所提供的值。

假设在卷积层中,设置偏执项b为0,则写法为:
1. bias_initializer=tf.constant_initializer(0)
2. bias_initializer=tf.zeros_initializer(0)

tf.random_normal_initializer(mean,stddev) #功能是将变量初始化为满足正太分布的随机值,主要参数(正太分布的均值和标准差),用所给的均值和标准差初始化均匀分布

tf.truncated_normal_initializer(mean,stddev,seed,dtype) #功能:将变量初始化为满足正太分布的随机值,但如果随机出来的值偏离平均值超过2个标准差,那么这个数将会被重新随机

mean:用于指定均值;stddev用于指定标准差;seed:用于指定随机数种子;dtype:用于指定随机数的数据类型。
通常只需要设定一个标准差stddev这一个参数就可以。

tf.random_uniform_initializer(a,b,seed,dtype) #从a到b均匀初始化,将变量初始化为满足平均分布的随机值,主要参数(最大值,最小值)

tf.uniform_unit_scaling_initializer(factor,seed,dtypr) #将变量初始化为满足平均分布但不影响输出数量级的随机值

max_val=math.sqrt(3/input_size)*factor;
input_size指输入数据的维数,假设输入为x,计算为x*w,则input_size=w.shape[0].
其分布区间为[-max_val,max_val]

tf.zeros_initializer() #将变量设置为全0;也可以简写为tf.Zeros()

tf.ones_initializer() #将变量设置为全1;可简写为tf.Ones()

以上这篇对Tensorflow中的变量初始化函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Tensorflow,变量,初始化

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“对Tensorflow中的变量初始化函数详解”
暂无“对Tensorflow中的变量初始化函数详解”评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。