这是一个使用knn把特征向量进行分类的demo。
Knn算法的思想简单说就是:看输入的sample点周围的k个点都属于哪个类,哪个类的点最多,就把sample归为哪个类。也就是说,训练集是一些已经被手动打好标签的数据,knn会根据你打好的标签来挖掘同类对象的相似点,从而推算sample的标签。
Knn算法的准确度受k影响较大,可能需要写个循环试一下选出针对不同数据集的最优的k。
至于如何拿到特征向量,可以参考之前的博文。
代码:
#-*- coding: utf-8 -*- __author__ = 'Rossie' from numpy import * import operator '''构造数据''' def createDataSet(): characters=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels=['A','A','B','B'] return characters,labels '''从文件中读取数据,将文本记录转换为矩阵,提取其中特征和类标''' def file2matrix(filename): fr=open(filename) arrayOLines=fr.readlines() numberOfLines=len(arrayOLines) #得到文件行数 returnMat=zeros((numberOfLines,3)) #创建以零填充的numberOfLines*3的NumPy矩阵 classLabelVector=[] index=0 for line in arrayOLines: #解析文件数据到列表 line=line.strip() listFromLine=line.split('\t') returnMat[index, :]=listFromLine[0:3] classLabelVector.append(listFromLine[-1]) index+=1 return returnMat,classLabelVector #返回特征矩阵和类标集合 '''归一化数字特征值到0-1范围''' '''输入为特征值矩阵''' def autoNorm(dataSet): minVals=dataSet.min(0) maxVals=dataSet.max(0) ranges=maxVals-minVals normDataSet=zeros(shape(dataSet)) m=dataSet.shape[0] normDataSet=dataSet-tile(minVals,(m,1)) normDataSet=normDataSet/tile(ranges,(m,1)) return normDataSet,ranges, minVals def classify(sample,dataSet,labels,k): dataSetSize=dataSet.shape[0] #数据集行数即数据集记录数 '''距离计算''' diffMat=tile(sample,(dataSetSize,1))-dataSet #样本与原先所有样本的差值矩阵 sqDiffMat=diffMat**2 #差值矩阵平方 sqDistances=sqDiffMat.sum(axis=1) #计算每一行上元素的和 distances=sqDistances**0.5 #开方 sortedDistIndicies=distances.argsort() #按distances中元素进行升序排序后得到的对应下标的列表 '''选择距离最小的k个点''' classCount={} for i in range(k): voteIlabel=labels[sortedDistIndicies[i]] classCount[voteIlabel]=classCount.get(voteIlabel,0)+1 '''从大到小排序''' sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) return sortedClassCount[0][0] '''针对约会网站数据的测试代码''' def datingClassTest(): hoRatio=0.20 #测试样例数据比例 datingDataMat,datingLabels=file2matrix('datingTestSet1.txt') normMat, ranges, minVals=autoNorm(datingDataMat) m =normMat.shape[0] numTestVecs=int(m*hoRatio) errorCount=0.0 k=4 for i in range(numTestVecs): classifierResult=classify(normMat[i, : ],normMat[numTestVecs:m, : ],datingLabels[numTestVecs:m],k) print("The classifier came back with: %s, thereal answer is: %s" %(classifierResult, datingLabels[i])) if(classifierResult!= datingLabels [i] ) : errorCount += 1.0 print("the total error rate is: %f" % (errorCount/float(numTestVecs))) def main(): sample=[0,0]#简单样本测试 sampleText = [39948,6.830795,1.213342]#文本中向量样本测试 k=3 group,labels=createDataSet() label1=classify(sample,group,labels,k)#简单样本的分类结果 fileN = "datingTestSet.txt" matrix,label = file2matrix(fileN) label2 =classify(sampleText,matrix,label,k)#文本样本的分类结果 print("ClassifiedLabel of the simple sample:"+label1) print("Classified Label of the textsample:"+label2) if __name__=='__main__': main() #datingClassTest()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
标签:
python,knn,分类
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“python使用knn实现特征向量分类”评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
2024年11月26日
2024年11月26日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]