一开始自学Python的numpy、pandas时候,索引和切片把我都给弄晕了,特别是numpy的切片索引、布尔索引和花式索引,简直就是大乱斗。但是最近由于版本的问题,从之前的Python2.7改用Python3.6 了,在3.6中提供了loc和iloc两种索引方法,把ix这个方法给划分开来了,所以很有必要做个总结和对比。
- loc——通过行标签索引行数据
- iloc——通过行号索引行数据
- ix——通过行标签或者行号索引行数据(基于loc和iloc 的混合)
同理,索引列数据也是如此!
举例说明:
1、分别使用loc、iloc、ix 索引第一行的数据:
(1)loc
import pandas as pd data=[[1,2,3],[4,5,6]] index=['a','b']#行号 columns=['c','d','e']#列号 df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框 #print df.loc['a'] ''' c 1 d 2 e 3 ''' print df.loc[0] #这个就会出现错误 ''' TypeError: cannot do label indexing on <class 'pandas.indexes.base.Index'> with these indexers [1] of <type 'int'> '''
(2)iloc
import pandas as pd data=[[1,2,3],[4,5,6]] index=['a','b']#行号 columns=['c','d','e']#列号 df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框 print df.iloc[0] ''' c 1 d 2 e 3 ''' print df.iloc['a'] ''' TypeError: cannot do positional indexing on <class 'pandas.indexes.base.Index'> with these indexers [a] of <type 'str'> '''
(3)ix
import pandas as pd data=[[1,2,3],[4,5,6]] index=['a','b']#行号 columns=['c','d','e']#列号 df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框 print df.ix[0] ''' c 1 d 2 e 3 ''' print df.ix['a'] ''' c 1 d 2 e 3 '''
2、分别使用loc、iloc、ix 索引第一列的数据:
import pandas as pd data=[[1,2,3],[4,5,6]] index=['a','b']#行号 columns=['c','d','e']#列号 df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框 print df.loc[:,['c']] print df.iloc[:,[0]] print df.ix[:,['c']] print df.ix[:,[0]] #结果都为 ''' c a 1 b 4 '''
3、分别使用loc、iloc、ix 索引多行的数据:
import pandas as pd data=[[1,2,3],[4,5,6]] index=['a','b']#行号 columns=['c','d','e']#列号 df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框 print df.loc['a':'b'] print df.iloc[0:1] print df.ix['a':'b'] print df.ix[0:1] #结果都为 ''' c d e a 1 2 3 b 4 5 6 '''
4、分别使用loc、iloc、ix 索引多列的数据:
import pandas as pd data=[[1,2,3],[4,5,6]] index=['a','b']#行号 columns=['c','d','e']#列号 df=pd.DataFrame(data,index=index,columns=columns)#生成一个数据框 print df.loc[:,'c':'d'] print df.iloc[:,0:2] print df.ix[:,'c':'d'] print df.ix[:,0:2] #结果都为 ''' c d a 1 2 b 4 5 '''
5、loc、iloc、ix使用切片的区别
loc、iloc、ix对于切片的索引数据就两种情况,按照标签切片索引和按照位置编号切片索引
In [20]: df.loc['ind0':'ind3'] Out[20]: col0 col1 col2 col3 col4 ind0 0 1 2 3 4 ind1 5 6 7 8 9 ind2 10 11 12 13 14 ind3 15 16 17 18 19 In [21]: df.iloc[0:3] Out[21]: col0 col1 col2 col3 col4 ind0 0 1 2 3 4 ind1 5 6 7 8 9 ind2 10 11 12 13 14
区别不在于用哪种方法,而是通过标签索引将会将切片末端包含进去,通过位置编号索引不会讲切片末端包含进去。同样的都是第一行到第四行,通过loc就会把1,2,3,4行都提取出来,通过iloc就只能把1,2,3行提取出来。ix方法也是一样,知识方法不同而已。
In [23]: df.ix['ind0':'ind3'] Out[23]: col0 col1 col2 col3 col4 ind0 0 1 2 3 4 ind1 5 6 7 8 9 ind2 10 11 12 13 14 ind3 15 16 17 18 19 In [24]: df.ix[0:3] Out[24]: col0 col1 col2 col3 col4 ind0 0 1 2 3 4 ind1 5 6 7 8 9 ind2 10 11 12 13 14
对于列的切片跟行的一样。
这里讨论了基本的索引和切片,如果有用词不当的地方请提出来,我将积极改正,或者有其他有关花式索引、布尔索引的问题也可以大家一起讨论讨论!
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]