一、简介

是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止

二、步骤

(1) 找出“最便宜”的节点,即可在最短时间内到达的节点。
(2) 更新该节点的邻居的开销,其含义将稍后介绍。
(3) 重复这个过程,直到对图中的每个节点都这样做了。
(4) 计算最终路径。

三、图解

python实现狄克斯特拉算法

上图中包括5个节点,箭头表示方向,线上的数字表示消耗时间。
首先根据上图做出一个初始表(父节点代表从哪个节点到达该节点):

python实现狄克斯特拉算法

然后从“起点”开始,根据图中的信息更新一下表,由于从“起点”不能直接到达“终点”节点,所以耗时为∞(无穷大):

python实现狄克斯特拉算法

有了这个表我们可以根据算法的步骤往下进行了。

第一步:找出“最便宜”的节点,这里是节点B:

python实现狄克斯特拉算法

第二步:更新该节点的邻居的开销,根据图从B出发可以到达A和“终点”节点,B目前的消耗2+B到A的消耗3=5,5小于原来A的消耗6,所以更新节点A相关的行:

python实现狄克斯特拉算法

同理,B目前消耗2+B到End的消耗5=7,小于∞,更新“终点”节点行:

python实现狄克斯特拉算法

B节点关联的节点已经更新完成,所以B节点不在后面的更新范围之内了:

python实现狄克斯特拉算法

找到下一个消耗最小的节点,那就是A节点:

python实现狄克斯特拉算法

根据A节点的消耗更新关联节点,只有End节点行被更新了:

python实现狄克斯特拉算法

这时候A节点也不在更新节点范围之内了:

python实现狄克斯特拉算法

最终表的数据如下:

python实现狄克斯特拉算法

根据最终表,从“起点”到“终点”的最少消耗是6,路径是起点->B->A->终点.

四、代码实现

# -*-coding:utf-8-*-
# 用散列表实现图的关系
# 创建节点的开销表,开销是指从"起点"到该节点的权重
graph = {}
graph["start"] = {}
graph["start"]["a"] = 6
graph["start"]["b"] = 2

graph["a"] = {}
graph["a"]["end"] = 1

graph["b"] = {}
graph["b"]["a"] = 3
graph["b"]["end"] = 5
graph["end"] = {}

# 无穷大
infinity = float("inf")
costs = {}
costs["a"] = 6
costs["b"] = 2
costs["end"] = infinity

# 父节点散列表
parents = {}
parents["a"] = "start"
parents["b"] = "start"
parents["end"] = None

# 已经处理过的节点,需要记录
processed = []


# 找到开销最小的节点
def find_lowest_cost_node(costs):
 # 初始化数据
 lowest_cost = infinity
 lowest_cost_node = None
 # 遍历所有节点
 for node in costs:
 # 该节点没有被处理
 if not node in processed:
  # 如果当前节点的开销比已经存在的开销小,则更新该节点为开销最小的节点
  if costs[node] < lowest_cost:
  lowest_cost = costs[node]
  lowest_cost_node = node
 return lowest_cost_node


# 找到最短路径
def find_shortest_path():
 node = "end"
 shortest_path = ["end"]
 while parents[node] != "start":
 shortest_path.append(parents[node])
 node = parents[node]
 shortest_path.append("start")
 return shortest_path


# 寻找加权的最短路径
def dijkstra():
 # 查询到目前开销最小的节点
 node = find_lowest_cost_node(costs)
 # 只要有开销最小的节点就循环(这个while循环在所有节点都被处理过后结束)
 while node is not None:
 # 获取该节点当前开销
 cost = costs[node]
 # 获取该节点相邻的节点
 neighbors = graph[node]
 # 遍历当前节点的所有邻居
 for n in neighbors.keys():
  # 计算经过当前节点到达相邻结点的开销,即当前节点的开销加上当前节点到相邻节点的开销
  new_cost = cost + neighbors[n]
  # 如果经当前节点前往该邻居更近,就更新该邻居的开销
  if new_cost < costs[n]:
  costs[n] = new_cost
  #同时将该邻居的父节点设置为当前节点
  parents[n] = node
 # 将当前节点标记为处理过
 processed.append(node)
 # 找出接下来要处理的节点,并循环
 node = find_lowest_cost_node(costs)
 # 循环完毕说明所有节点都已经处理完毕
 shortest_path = find_shortest_path()
 shortest_path.reverse()
 print(shortest_path)
# 测试
dijkstra()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
python,狄克斯特拉

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“python实现狄克斯特拉算法”
暂无“python实现狄克斯特拉算法”评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?