导入 numpy 、PIL
numpy用来做矩阵运算,PIL用来读取图片。
import numpy as np from PIL import Image
读取图片,然后转换成RGB模式存在矩阵里
im = Image.open(imagename).convert('RGB')
arr = np.array(im)
查看arr的shape,可以看到arr是个3维的数组,数组大小等于 长*宽*3
In [566]: arr.shape Out[566]: (313, 450, 3)
每个像素有3个数字表示,分别对应(R,G,B)
IN [567]: arr[0][0] Out[567]: array([6, 4, 9], dtype=uint8)
原始图片
彩色转黑白
把像素的R,G,B三个通道数值都置为r*0.299+g*0.587+b*0.114
def blackWithe(imagename):
  # r,g,b = r*0.299+g*0.587+b*0.114
  im = np.asarray(Image.open(imagename).convert('RGB'))
  trans = np.array([[0.299,0.587,0.114],[0.299,0.587,0.114],[0.299,0.587,0.114]]).transpose()
  im = np.dot(im,trans)
  return Image.fromarray(np.array(im).astype('uint8'))
流年
把R通道的数值开平方,然后乘以一个参数
def fleeting(imagename,params=12):
  im = np.asarray(Image.open(imagename).convert('RGB'))
  im1 = np.sqrt(im*[1.0,0.0,0.0])*params
  im2 = im*[0.0,1.0,1.0]
  im = im1+im2
  return Image.fromarray(np.array(im).astype('uint8')) 
旧电影
把像素的R,G,B三个通道数值,3个通道的分别乘以3个参数后求和,最后把超过255的值置为255
def oldFilm(imagename):
  im = np.asarray(Image.open(imagename).convert('RGB'))
  # r=r*0.393+g*0.769+b*0.189 g=r*0.349+g*0.686+b*0.168 b=r*0.272+g*0.534b*0.131
  trans = np.array([[0.393,0.769,0.189],[0.349,0.686,0.168],[0.272,0.534,0.131]]).transpose()
  # clip 超过255的颜色置为255
  im = np.dot(im,trans).clip(max=255)        
  return Image.fromarray(np.array(im).astype('uint8')) 
反色
这个最简单了,用255减去每个通道的原来的数值
def reverse(imagename):
  im = 255 - np.asarray(Image.open(imagename).convert('RGB'))
  return Image.fromarray(np.array(im).astype('uint8')) 
PS:示例
from PIL import Image, ImageFilter
# 打开一个jpg图像文件,注意是当前路径:
im = Image.open('Penguins.jpg')
# 模糊
im2 = im.filter(ImageFilter.BLUR)
# 模糊可设置模糊的程度
im22 = im.filter(ImageFilter.BoxBlur(200))
# 轮廓滤波
im3 = im.filter(ImageFilter.CONTOUR)
# 边缘增强滤波(锐化)
im4 = im.filter(ImageFilter.EDGE_ENHANCE)
# 浮雕滤波
im5 = im.filter(ImageFilter.EMBOSS)
# 寻找边缘信息的滤波
im6 = im.filter(ImageFilter.FIND_EDGES)
im2.save('BLUR.jpg', 'jpeg')
im3.save('CONTOUR.jpg', 'jpeg')
im4.save('EDGE_ENHANCE.jpg', 'jpeg')
im5.save('EMBOSS.jpg', 'jpeg')
im6.save('FIND_EDGES.jpg', 'jpeg')
im22.save('BoxBlur(200).jpg', 'jpeg')
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
                                免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
                                如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
                            
                        暂无“用Python PIL实现几个简单的图片特效”评论...
                                    RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新动态
2025年11月01日
                                2025年11月01日
                    - 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]
 
                         
                        



