1.iterable iterator区别
要了解两者区别,先要了解一下迭代器协议:
迭代器协议是指:对象需要提供__next__()方法,它返回迭代中的元素,在没有更多元素后,抛出StopIteration异常,终止迭代。
可迭代对象就是:实现了迭代器协议的对象。
协议是一种约定,可迭代对象实现迭代器协议,Python的内置工具(如for循环,sum,min,max函数等)通过迭代器协议访问对象,因此,for循环并不需要知道对象具体是什么,只需要知道对象能够实现迭代器协议即可。
迭代器(iterator)与可迭代对象(iterable)并不是同一个概念。
直观上:
1.可迭代对象(iterable):凡是具有__iter__的方法的类,都是可迭代的类。可迭代类创建的对象实现了__iter__方法,因此就是可迭代对象。用list、tuple等容器创建的对象,都是可迭代对象。可迭代对象通过__iter__方法返回一个迭代器,然后在内部调用__next__方法进行迭代,最后没有元素时,抛出异常(这个异常python自己会处理,不会让开发者看见)。
2.迭代器(iterator):迭代器对象必须同时实现__iter__和__next__方法才是迭代器。对于迭代器来说,__iter__ 返回的是它自身 self,__next__ 则是返回迭代器中的下一个值,最后没有元素时,抛出异常(异常可以被开发者看到)。
从上面2点可以看出:
1.迭代器一定是可迭代对象,因为它实现了__iter__()方法;
2.通过iter()方法(在类的内部就是__iter__)能够使一个可迭代对象返回一个迭代器。
3.迭代器的 __iter__ 方法返回的是自身,并不产生新的迭代器对象。而可迭代对象的 __iter__ 方法通常会返回一个新的迭代器对象。
第3点性质正是可迭代对象可以重复遍历的原因(每次返回一个独立的迭代器,就可以保证不同的迭代过程不会互相影响);而迭代器由于返回自身,因此只能遍历一次。
上面3点可以通过下面的例子看出来:
from collections import Iterable from collections import Iterator print isinstance(iter([1,2]),Iterator) print isinstance(iter([1,2]),Iterable) print isinstance([1,2],Iterator) print isinstance([1,2],Iterable) ##result True True False True ##id可以查看一个对象在内存中的地址 test=[1,2,3] testIter=iter(test) print id(testIter) print id(testIter) print id(iter(test)) print id(iter(test)) print id(test.__iter__()) print id(test.__iter__()) ##result:可迭代对象每次调用iter方法都会返回一个新的迭代器对象,而迭代器对象调用iter方法返回自身 67162576 67162576 67162688 67162632 67162856 67163024
2.iterable的工作机制
拿一个例子看看,首先定义一个有__iter__方法,但是没有next()方法的类 (PS:在python2中是next(),python3是__next__()):
from collections import Iterable, Iterator class Student(object): def __init__(self,score): self.score=score def __iter__(self): return iter(self.score) test= Student([80,90,95]) print isinstance(test, Iterable) print isinstance(test, Iterator) for i in test: print i ##result True False 80 90 95 ##可重复遍历 for i in test: print i ##result 80 90 95
上面代码的结果印证了定义中提到的:
缺少了next()方法,可迭代对象就不是迭代器。
此外,注意到:可迭代对象通过__iter__方法每次都返回了一个独立的迭代器,这样就可以保证不同的迭代过程不会互相影响。
也就是说,通过iterable可以实现重复遍历,而迭代器是无法重复遍历的!
因此,如果想要把可迭代对象转变为迭代器,可以先调用iter()方法返回一个迭代器。然后就可以用next()不断迭代了!
print isinstance(iter(test),Iterator) testIter=iter(test) print testIter.next() print testIter.next() print testIter.next() ##result True 80 90 95 ##一旦取完了可迭代对象中所有的元素,再次调用next就会发生异常 print testIter.next() ##result StopIteration:
3.迭代器Iterator的工作机制
看下面这个例子:
class Student(object): def __init__(self,score): self.score=score def __iter__(self): return self def next(self): if self.score<100: self.score+=1 return self.score else: raise StopIteration() test= Student(90) print isinstance(test, Iterable) print isinstance(test, Iterator) print test.next() print test.next() print test.next() for i in test: print i ##result True True 91 92 93 94 95 96 97 98 99 100 ##如果此时再对test这个迭代器调用next方法,就会抛出异常 test.next() ##result StopIteration:
这个例子印证了定义中的:迭代器对象必须同时实现__iter__和__next__方法才是迭代器。
那么,使用迭代器好处在哪呢"text-align: center">
此外,还要注意,python中的for循环其实兼容了两种机制:
- 如果对象有__iter__会返回一个迭代器。
- 如果对象没有__iter__,但是实现了__getitem__,会改用下标迭代的方式。
- __getitem__可以帮助一个对象进行取数和切片操作。
当for发现没有__iter__但是有__getitem__的时候,会从0开始依次读取相应的下标,直到发生IndexError为止,这是一种旧的迭代协议。iter方法也会处理这种情况,在不存在__iter__的时候,返回一个下标迭代的iterator对象来代替。一个重要的例子是str,字符串就是没有__iter__方法的,但是却依然可以迭代,原因就是其在for循环时调用了__getitem__方法。
看一个例子:
from collections import Iterable, Iterator class Student(object): def __init__(self,score): self.score=score def __getitem__(self,n): return self.score[n] test= Student([80,90,95]) print isinstance(test, Iterable) print isinstance(test, Iterator) print isinstance(iter(test), Iterable) print isinstance(iter(test), Iterator) for i in test: print i ##result False False True True 80 90 95 for i in range(0,3): print test[i] ##result 80 90 95 for i in iter(test): print i ##result 80 90 95
可以看到,实现了__getitem__方法的对象本身,尽管不是iterable与iterator,仍旧是可以调用for循环的。
通过iter方法,返回一个下标迭代的iterator对象。
5.generator的原理
最后说一下生成器,生成器是一种特殊的迭代器,当然也是可迭代对象。
对于生成器,Python会自动实现迭代器协议,以便应用到迭代中(如for循环,sum函数)。由于生成器自动实现了迭代器协议,所以,我们可以调用它的next方法,并且,在没有值可以返回的时候,生成器自动产生StopIteration异常。
创建生成器的方法:将return 改为yield。具体的实现网络上教程很多,不细说了。
6.总结
到一幅图片很好的描述了本文的所有内容,就拿它作为文末的总结吧!
以上所述是小编给大家介绍的Python中的可迭代对象、迭代器、For循环工作机制、生成器详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新动态
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]