本文python代码实现的是最小二乘法线性拟合,并且包含自己造的轮子与别人造的轮子的结果比较。

问题:对直线附近的带有噪声的数据进行线性拟合,最终求出w,b的估计值。

最小二乘法基本思想是使得样本方差最小。

代码中self_func()函数为自定义拟合函数,skl_func()为调用scikit-learn中线性模块的函数。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
 
n = 101
 
x = np.linspace(0,10,n)
noise = np.random.randn(n)
y = 2.5 * x + 0.8 + 2.0 * noise
 
def self_func(steps=100, alpha=0.01):
  w = 0.5
  b = 0
  alpha = 0.01
  for i in range(steps):
    y_hat = w*x + b
    dy = 2.0*(y_hat - y)
    dw = dy*x
    db = dy
    w = w - alpha*np.sum(dw)/n
    b = b - alpha*np.sum(db)/n
    e = np.sum((y_hat-y)**2)/n
    #print (i,'W=',w,'\tb=',b,'\te=',e)
  print ('self_func:\tW =',w,'\n\tb =',b)
  plt.scatter(x,y)
  plt.plot(np.arange(0,10,1), w*np.arange(0,10,1) + b, color = 'r', marker = 'o', label = 'self_func(steps='+str(steps)+', alpha='+str(alpha)+')')
 
def skl_func():
  lr = LinearRegression()
  lr.fit(x.reshape(-1,1),y)
  y_hat = lr.predict(np.arange(0,10,0.75).reshape(-1,1))
  print('skl_fun:\tW = %f\n\tb = %f'%(lr.coef_,lr.intercept_))
  plt.plot(np.arange(0,10,0.75), y_hat, color = 'g', marker = 'x', label = 'skl_func')
  
self_func(10000)
skl_func()
plt.legend(loc='upper left')
plt.show()

结果:

self_func:  W = 2.5648753825503197     b = 0.24527830841237772
skl_fun:     W = 2.564875                             b = 0.245278

python实现最小二乘法线性拟合

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
python最小二乘法线性拟合,python线性拟合,python最小二乘法

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“python实现最小二乘法线性拟合”
暂无“python实现最小二乘法线性拟合”评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?