前言
Matplotlib 是 Python 的绘图库。作为程序员,经常需要进行绘图,在我自己的工作中,如果需要绘图,一般都是将数据导入到excel中,然后通过excel生成图表,这样操作起来还是比较繁琐的,所以最近学习了一下Matplotlib模块,将该模块的常用的绘图手段和大家分享一下,提高大家在工作中的效率;
在示例中,我们主要用到Matplotlib和Numpy这两个模块来为大家演示Python强大的绘图功能,相信大家通过我下面的10个示例,基本上可以满足大家日常工作的需求,再次强调一下,只是简单的用法,大家千万不要想通过这篇博客获取到太高深的用法。
下面进入正题
1、绘制一条直线
代码如下,下面的代码大家应该都可以看懂吧
# 导入常用的包 import numpy as np import matplotlib.pyplot as plt # 生成-1到1的数据,一共生成100个,也可以生成1到-1的数据,这些数据是平均分布的 # 定义x轴的数据 x = np.linspace(-1,1,100) # 定义y轴的数据 y = x * 2 + 100 plt.plot(x,y) # 显示图像 plt.show()
效果如下
2、创建一个画布,同时设置该画布的大小
代码如下
import numpy as np import matplotlib.pyplot as plt x = np.linspace(-1,1,100) y1 = x * 2 + 100 y2 = x ** 2 # 创建一个画布 # figsize:设置画布的大小 plt.figure(figsize=(2,2)) plt.plot(x,y1) # 创建第二个画布 plt.figure() plt.plot(x,y2) plt.show()
效果如下,会同时显示两张画布
3、在一张画布中画两条线,同时可以设置线的颜色,宽度,和风格
代码如下
import numpy as np import matplotlib.pyplot as plt x = np.linspace(-1,1,100) y1 = x * 2 + 0.5 y2 = x ** 2 # color:表示设置线的颜色 # linewidth:表示设置线的宽度 # linestyle:表示设置线的风格 plt.figure(figsize=(2,2)) plt.plot(x,y1,color='r',linewidth=1.0,linestyle='--') plt.plot(x,y2,color='b',linewidth=5.0,linestyle='-') plt.show() # 上面的效果就是2条曲线被放到一个画布中
效果如下
4、限制x轴,y轴的显示范围,为x轴和y轴添加描述,替换x轴和y轴的显示信息
代码如下
import numpy as np import matplotlib.pyplot as plt # 设置坐标轴 x = np.linspace(-3,3,100) y1 = x * 2 + 0.5 y2 = x ** 2 plt.figure(figsize=(6,6)) plt.plot(x,y1,color='r',linewidth=1.0,linestyle='--') plt.plot(x,y2,color='b',linewidth=5.0,linestyle='-') # 限制x轴的显示范围 plt.xlim((-1,2)) # 限制y轴的显示范围 plt.ylim((-1,5)) # 给x轴加描述 plt.xlabel("xxxxxx") # 给y轴加描述 plt.ylabel("yyyyyy") # 替换一下横坐标的显示 temp = np.linspace(-2,2,11) plt.xticks(temp) # 替换纵坐标的标签,用level0代替之前的-1 plt.yticks([-1,0,1,2,3,4,5],["level0","level1","level2","level3","level4","level5","level6"]) plt.show()
效果如下
5、对边框进行设置,调整x轴和y轴的位置
代码如下
import numpy as np import matplotlib.pyplot as plt # 设置坐标轴 x = np.linspace(-3,3,100) y1 = x * 2 + 0.5 y2 = x ** 2 plt.figure(figsize=(6,6)) plt.plot(x,y1,color='r',linewidth=1.0,linestyle='--') plt.plot(x,y2,color='b',linewidth=5.0,linestyle='-') # 限制x轴的显示范围 plt.xlim((-1,2)) # 限制y轴的显示范围 plt.ylim((-1,5)) # 给x轴加描述 plt.xlabel("xxxxxx") # 给y轴加描述 plt.ylabel("yyyyyy") # 替换一下横坐标的显示 temp = np.linspace(-2,2,11) plt.xticks(temp) # 替换纵坐标的标签,用level0代替之前的-1 # plt.yticks([-1,0,1,2,3,4,5],["level0","level1","level2","level3","level4","level5","level6"]) # 获取边框 ax = plt.gca() # 设置右边框的颜色为红色 ax.spines["right"].set_color("r") # 去掉上边框 ax.spines["top"].set_color(None) # 把x轴的刻度设置为bottom ax.xaxis.set_ticks_position("bottom") # 把y轴的客户设置为left ax.yaxis.set_ticks_position("left") # 设置x和y交汇的点,x轴是0,y是也是0,也就是x轴和y轴的都是0点交汇 ax.spines["bottom"].set_position(("data",0)) ax.spines["left"].set_position(("data",0)) plt.show()
效果如下
6、为画布添加图例
代码如下
#Auther Bob #--*--conding:utf-8 --*-- import numpy as np import matplotlib.pyplot as plt # 设置图例 x = np.linspace(-3, 3, 100) y1 = x * 2 + 0.5 y2 = x ** 2 plt.figure(figsize=(6, 6)) # 首先要为两条线分别取名,这里的逗号必须要有 l1, = plt.plot(x, y1, color='r', linewidth=1.0, linestyle='--') l2, = plt.plot(x, y2, color='b', linewidth=5.0, linestyle='-') # handles控制图例中要说明的线 # labels为两条线分别取一个label # loc控制图例的显示位置,一般用best,由代码为我们选择最优的位置即可 plt.legend(handles=[l1, l2], labels=["test1", "test2"], loc='best') # 限制x轴的显示范围 plt.xlim((-1, 2)) # 限制y轴的显示范围 plt.ylim((-1, 5)) # 给x轴加描述 plt.xlabel("xxxxxx") # 给y轴加描述 plt.ylabel("yyyyyy") # 替换一下横坐标的显示 temp = np.linspace(-2, 2, 11) plt.xticks(temp) # 替换纵坐标的标签,用level0代替之前的-1 plt.yticks([-1, 0, 1, 2, 3, 4, 5], ["level0", "level1", "level2", "level3", "level4", "level5", "level6"]) # 为图像加一个图例,用来对图像做说明 plt.show()
效果如下
7、为图像添加描述
代码如下
import numpy as np import matplotlib.pyplot as plt # 为图像做标注 x = np.linspace(-3,3,100) y1 = x * 2 # y2 = x ** 2 plt.figure(figsize=(6,6)) plt.plot(x,y1,color='r',linewidth=1.0,linestyle='-') # 给x轴加描述 plt.xlabel("xxxxxx") # 给y轴加描述 plt.ylabel("yyyyyy") # ====================================================== # 在x轴为x0,y轴为x0 * 2上画一个点,这个点的颜色是红色,大小为50,这个大小就是这个点显示的大小 x0 = 0.5 y0 = x0 * 2 # scatter是画点的方法 plt.scatter(x0,y0,color='g',s=50) # 画线 # 这条线是第一个点的坐标为[x0,y0],第二个点的坐标为[x0,-6],后面就是设置线的风格,线的颜色,线的宽度 plt.plot([x0,x0],[y0,-6],color='k',linestyle='--',linewidth=1.0) # 画箭头和描述 # xy代表我们的点 # xytext代码我们描述的位置,基于当前的点,在x轴+30,在y轴-30 # r'$2*x={n}$是我们要显示的文字信息,格式必须要这样 # textcoords表示作为起点 # fontsize表示设置字体大小 # arrowprops设置箭头 # arrowstyle设置箭头的样式 # connectionstyle设置风格.2表示弧度 plt.annotate(r'$2*0.5={n}$'.format(n = y0),xy=(x0,y0),xytext=(+30,-30),textcoords='offset points',fontsize=10,arrowprops=dict(arrowstyle='->',connectionstyle='arc3,rad=.2')) # 显示文字描述,从x轴为-1,y轴为2开始显示,$$中就是要显示的字符,这里如果要显示空格,则需要转义 # fontdict设置字体 plt.text(-1,2,r'$1\ 2\ 3\ 4$',fontdict={"size":16,"color":"r"}) # ========================================================= # 为图像加一个图例,用来对图像做说明 plt.show()
效果如下
8、绘制散点图
代码如下
import numpy as np import matplotlib.pyplot as plt # 绘制散点图 # plt.scatter(np.arange(1,10,1),np.arange(10,19,1)) # plt.scatter(np.linspace(-3,3,10),np.linspace(-3,3,10)) x = np.random.normal(1,10,500) y = np.random.normal(1,10,500) print(x) # s设置点的大小 # c是颜色 # alpha是透明度 plt.scatter(x,y,s=50,c='b',alpha=0.5) plt.show()
效果如下
9、绘制直方图
代码如下
import numpy as np import matplotlib.pyplot as plt # 绘制直方图 x = np.arange(10) y = x ** 2 + 10 # facecolor设置柱体的颜色 # edgecolor设置边框的颜色 plt.bar(x,y,facecolor='g',edgecolor='r') # 绘制翻转过来的直方图 # plt.bar(x,-y) #显示文字 for x,y in zip(x,y): plt.text(x,y,"{f}".format(f=y),ha="center",va='bottom') plt.show()
效果如下
10、一张画布显示多张图像
代码如下
#Auther Bob #--*--conding:utf-8 --*-- import numpy as np import matplotlib.pyplot as plt # plt.figure() # 有一个两行两列的单元格,这个位于第一个单元格 # plt.subplot(2,2,1) # 画一条【0,0】-----》【1,1】的直线 # plt.plot([0,1],[0,1]) # 有一个两行两列的单元格,这个位于第一个单元格 # plt.subplot(2,2,2) # 画一条【0,0】-----》【1,1】的直线 # plt.plot([0,1],[0,1]) # 有一个两行两列的单元格,这个位于第一个单元格 # plt.subplot(2,2,3) # 画一条【0,0】-----》【1,1】的直线 # plt.plot([1,0],[0,1]) # plt.show() # 上面的例子,每张图他显示的大小是一样的,我们想显示不同的大小该怎么办? plt.figure() # 有一个两行三列的单元格,这个位于第一个单元格 plt.subplot(2,1,1) # 画一条【0,0】-----》【1,1】的直线 plt.plot([0,1],[0,1]) # 有一个两行三列的单元格,这个位于第四个单元格,因为第一个单元格占了3个位子,所以这里就是第四个 plt.subplot(2,3,4) # 画一条【0,0】-----》【1,1】的直线 plt.plot([0,1],[0,1]) # 有一个两行三列的单元格,这个位于第五个单元格 plt.subplot(2,3,5) # 画一条【0,0】-----》【1,1】的直线 plt.plot([1,0],[0,1]) plt.show()
效果如下
11、matplotlib模块中的颜色和线条风格
作为线性图的替代,可以通过向 plot() 函数添加格式字符串来显示离散值。 可以使用以下格式化字符。
字符
描述
'-'
实线样式
'--'
短横线样式
'-.'
点划线样式
':'
虚线样式
'.'
点标记
','
像素标记
'o'
圆标记
'v'
倒三角标记
'^'
正三角标记
'<'
左三角标记
'>'
右三角标记
'1'
下箭头标记
'2'
上箭头标记
'3'
左箭头标记
'4'
右箭头标记
's'
正方形标记
'p'
五边形标记
'*'
星形标记
'h'
六边形标记 1
'H'
六边形标记 2
'+'
加号标记
'x'
X 标记
'D'
菱形标记
'd'
窄菱形标记
'|'
竖直线标记
'_'
水平线标记
以下是颜色的缩写:
字符
颜色
'b'
蓝色
'g'
绿色
'r'
红色
'c'
青色
'm'
品红色
'y'
黄色
'k'
黑色
'w'
白色
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]