神经网络只是由两个或多个线性网络层叠加,并不能学到新的东西,简单地堆叠网络层,不经过非线性激活函数激活,学到的仍然是线性关系。

但是加入激活函数可以学到非线性的关系,就具有更强的能力去进行特征提取。

构造数据

import torch
import torch.nn.functional as F
from torch.autograd import Variable

import matplotlib.pyplot as plt

x = torch.linspace(-5, 5, 200)  # 构造一段连续的数据
x = Variable(x)	 # 转换成张量
x_np = x.data.numpy()	# 换成 numpy array, 出图时用

Relu

表达式:

PyTorch中常用的激活函数的方法示例

代码:

y_relu = F.relu(x).data.numpy()
plt.plot(x_np, y_relu, c='red', label='relu')
plt.ylim((-1, 5))
plt.legend(loc='best')

plt.show()

形状如图:

PyTorch中常用的激活函数的方法示例

Sigmoid

表达式:

PyTorch中常用的激活函数的方法示例

代码:

y_sigmoid = F.sigmoid(x).data.numpy()
plt.plot(x_np, y_sigmoid, c='red', label='sigmoid')
plt.ylim((-0.2, 1.2))
plt.legend(loc='best')

plt.show()

形状如图:

PyTorch中常用的激活函数的方法示例

Tanh

表达式:

PyTorch中常用的激活函数的方法示例

代码:

y_tanh = F.tanh(x).data.numpy()
plt.plot(x_np, y_tanh, c='red', label='tanh')
plt.ylim((-1.2, 1.2))
plt.legend(loc='best')

plt.show()

形状如图:

PyTorch中常用的激活函数的方法示例

Softplus

表达式:

PyTorch中常用的激活函数的方法示例

代码:

y_softplus = F.softplus(x).data.numpy()
plt.plot(x_np, y_softplus, c='red', label='softplus')
plt.ylim((-0.2, 6))
plt.legend(loc='best')

plt.show()

形状如图:

PyTorch中常用的激活函数的方法示例

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
PyTorch,激活函数

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“PyTorch中常用的激活函数的方法示例”
暂无“PyTorch中常用的激活函数的方法示例”评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?