本文实例为大家分享了python3单目标粒子群算法的具体代码,供大家参考,具体内容如下
关于PSO的基本知识......就说一下算法流程
1) 初始化粒子群;
随机设置各粒子的位置和速度,默认粒子的初始位置为粒子最优位置,并根据所有粒子最优位置,选取群体最优位置。
2) 判断是否达到迭代次数;
若没有达到,则跳转到步骤3)。否则,直接输出结果。
3) 更新所有粒子的位置和速度;
4) 计算各粒子的适应度值。
将粒子当前位置的适应度值与粒子最优位置的适应度值进行比较,决定是否更新粒子最优位置;将所有粒子最优位置的适应度值与群体最优位置的适应度值进行比较,决定是否更新群体最优位置。然后,跳转到步骤2)。
直接扔代码......(PS:1.参数动态调节;2.例子是二维的)
首先,是一些准备工作...
# Import libs import numpy as np import random as rd import matplotlib.pyplot as plt # Constant definition MIN_POS = [-5, -5] # Minimum position of the particle MAX_POS = [5, 5] # Maximum position of the particle MIN_SPD = [-0.5, -0.5] # Minimum speed of the particle MAX_SPD = [1, 1] # Maximum speed of the particle C1_MIN = 0 C1_MAX = 1.5 C2_MIN = 0 C2_MAX = 1.5 W_MAX = 1.4 W_MIN = 0
然后是PSO类
# Class definition class PSO(): """ PSO class """ def __init__(self,iters=100,pcount=50,pdim=2,mode='min'): """ PSO initialization ------------------ """ self.w = None # Inertia factor self.c1 = None # Learning factor self.c2 = None # Learning factor self.iters = iters # Number of iterations self.pcount = pcount # Number of particles self.pdim = pdim # Particle dimension self.gbpos = np.array([0.0]*pdim) # Group optimal position self.mode = mode # The mode of PSO self.cur_pos = np.zeros((pcount, pdim)) # Current position of the particle self.cur_spd = np.zeros((pcount, pdim)) # Current speed of the particle self.bpos = np.zeros((pcount, pdim)) # The optimal position of the particle self.trace = [] # Record the function value of the optimal solution def init_particles(self): """ init_particles function ----------------------- """ # Generating particle swarm for i in range(self.pcount): for j in range(self.pdim): self.cur_pos[i,j] = rd.uniform(MIN_POS[j], MAX_POS[j]) self.cur_spd[i,j] = rd.uniform(MIN_SPD[j], MAX_SPD[j]) self.bpos[i,j] = self.cur_pos[i,j] # Initial group optimal position for i in range(self.pcount): if self.mode == 'min': if self.fitness(self.cur_pos[i]) < self.fitness(self.gbpos): gbpos = self.cur_pos[i] elif self.mode == 'max': if self.fitness(self.cur_pos[i]) > self.fitness(self.gbpos): gbpos = self.cur_pos[i] def fitness(self, x): """ fitness function ---------------- Parameter: x : """ # Objective function fitval = 5*np.cos(x[0]*x[1])+x[0]*x[1]+x[1]**3 # min # Retyrn value return fitval def adaptive(self, t, p, c1, c2, w): """ """ #w = 0.95 #0.9-1.2 if t == 0: c1 = 0 c2 = 0 w = 0.95 else: if self.mode == 'min': # c1 if self.fitness(self.cur_pos[p]) > self.fitness(self.bpos[p]): c1 = C1_MIN + (t/self.iters)*C1_MAX + np.random.uniform(0,0.1) elif self.fitness(self.cur_pos[p]) <= self.fitness(self.bpos[p]): c1 = c1 # c2 if self.fitness(self.bpos[p]) > self.fitness(self.gbpos): c2 = C2_MIN + (t/self.iters)*C2_MAX + np.random.uniform(0,0.1) elif self.fitness(self.bpos[p]) <= self.fitness(self.gbpos): c2 = c2 # w #c1 = C1_MAX - (C1_MAX-C1_MIN)*(t/self.iters) #c2 = C2_MIN + (C2_MAX-C2_MIN)*(t/self.iters) w = W_MAX - (W_MAX-W_MIN)*(t/self.iters) elif self.mode == 'max': pass return c1, c2, w def update(self, t): """ update function --------------- Note that : 1. Update particle position 2. Update particle speed 3. Update particle optimal position 4. Update group optimal position """ # Part1 : Traverse the particle swarm for i in range(self.pcount): # Dynamic parameters self.c1, self.c2, self.w = self.adaptive(t,i,self.c1,self.c2,self.w) # Calculate the speed after particle iteration # Update particle speed self.cur_spd[i] = self.w*self.cur_spd[i] +self.c1*rd.uniform(0,1)*(self.bpos[i]-self.cur_pos[i]) +self.c2*rd.uniform(0,1)*(self.gbpos - self.cur_pos[i]) for n in range(self.pdim): if self.cur_spd[i,n] > MAX_SPD[n]: self.cur_spd[i,n] = MAX_SPD[n] elif self.cur_spd[i,n] < MIN_SPD[n]: self.cur_spd[i,n] = MIN_SPD[n] # Calculate the position after particle iteration # Update particle position self.cur_pos[i] = self.cur_pos[i] + self.cur_spd[i] for n in range(self.pdim): if self.cur_pos[i,n] > MAX_POS[n]: self.cur_pos[i,n] = MAX_POS[n] elif self.cur_pos[i,n] < MIN_POS[n]: self.cur_pos[i,n] = MIN_POS[n] # Part2 : Update particle optimal position for k in range(self.pcount): if self.mode == 'min': if self.fitness(self.cur_pos[k]) < self.fitness(self.bpos[k]): self.bpos[k] = self.cur_pos[k] elif self.mode == 'max': if self.fitness(self.cur_pos[k]) > self.fitness(self.bpos[k]): self.bpos[k] = self.cur_pos[k] # Part3 : Update group optimal position for k in range(self.pcount): if self.mode == 'min': if self.fitness(self.bpos[k]) < self.fitness(self.gbpos): self.gbpos = self.bpos[k] elif self.mode == 'max': if self.fitness(self.bpos[k]) > self.fitness(self.gbpos): self.gbpos = self.bpos[k] def run(self): """ run function ------------- """ # Initialize the particle swarm self.init_particles() # Iteration for t in range(self.iters): # Update all particle information self.update(t) # self.trace.append(self.fitness(self.gbpos))
然后是main...
def main(): """ main function """ for i in range(1): pso = PSO(iters=100,pcount=50,pdim=2, mode='min') pso.run() # print('='*40) print('= Optimal solution:') print('= x=', pso.gbpos[0]) print('= y=', pso.gbpos[1]) print('= Function value:') print('= f(x,y)=', pso.fitness(pso.gbpos)) #print(pso.w) print('='*40) # plt.plot(pso.trace, 'r') title = 'MIN: ' + str(pso.fitness(pso.gbpos)) plt.title(title) plt.xlabel("Number of iterations") plt.ylabel("Function values") plt.show() # input('= Press any key to exit...') print('='*40) exit() if __name__ == "__main__": main()
最后是计算结果,完美结束!!!
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“python3实现单目标粒子群算法”评论...
更新动态
2024年11月25日
2024年11月25日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]