废话不多说,直接上代码!
# -*- coding: utf-8 -*- # @Author : FELIX # @Date : 2018/6/30 9:49 from faker import Factory # zh_CN 表示中国大陆版 fake = Factory().create('zh_CN') # 产生随机手机号 print(fake.phone_number()) # 产生随机姓名 print(fake.name()) # 产生随机地址 print(fake.address()) # 随机产生国家名 print(fake.country()) # 随机产生国家代码 print(fake.country_code()) # 随机产生城市名 print(fake.city_name()) # 随机产生城市 print(fake.city()) # 随机产生省份 print(fake.province()) # 产生随机email print(fake.email()) # 产生随机IPV4地址 print(fake.ipv4()) # 产生长度在最大值与最小值之间的随机字符串 print(fake.pystr(min_chars=0, max_chars=8)) # 随机产生车牌号 print(fake.license_plate()) # 随机产生颜色 print(fake.rgb_color()) # rgb print(fake.safe_hex_color()) # 16进制 print(fake.color_name()) # 颜色名字 print(fake.hex_color()) # 16进制 # 随机产生公司名 print(fake.company()) # 随机产生工作岗位 print(fake.job()) # 随机生成密码 print(fake.password(length=10, special_chars=True, digits=True, upper_case=True, lower_case=True)) # 随机生成uuid print(fake.uuid4()) # 随机生成sha1 print(fake.sha1(raw_output=False)) # 随机生成md5 print(fake.md5(raw_output=False)) # 随机生成女性名字 print(fake.name_female()) # 男性名字 print(fake.name_male()) # 随机生成名字 print(fake.name()) # 生成基本信息 print(fake.profile(fields=None, sex=None)) print(fake.simple_profile(sex=None)) # 随机生成浏览器头user_agent print(fake.user_agent()) # 随机产生时间 fake.month_name() # 'September' fake.date_time_this_century(before_now=True, after_now=False, tzinfo=None) # datetime.datetime(2010, 7, 21, 18, 52, 43) fake.time_object(end_datetime=None) # datetime.time(6, 39, 26) fake.date_time_between(start_date="-30y", end_date="now", tzinfo=None) # datetime.datetime(2013, 10, 11, 18, 43, 40) fake.future_date(end_date="+30d", tzinfo=None) # datetime.date(2018, 7, 8) fake.date_time(tzinfo=None, end_datetime=None) # datetime.datetime(2006, 9, 4, 20, 46, 6) fake.date(pattern="%Y-%m-%d", end_datetime=None) # '1998-08-02' fake.date_time_this_month(before_now=True, after_now=False, tzinfo=None) # datetime.datetime(2018, 6, 8, 9, 56, 24) fake.timezone() # 'Africa/Conakry' fake.date_time_this_decade(before_now=True, after_now=False, tzinfo=None) # datetime.datetime(2017, 6, 27, 21, 18, 28) fake.month() # '04' fake.day_of_week() # 'Wednesday' fake.iso8601(tzinfo=None, end_datetime=None) # '1988-02-28T09:22:29' fake.time_delta(end_datetime=None) # datetime.timedelta(10832, 82660) fake.date_object(end_datetime=None) # datetime.date(2005, 8, 18) fake.date_this_decade(before_today=True, after_today=False) # datetime.date(2015, 1, 5) fake.date_this_century(before_today=True, after_today=False) # datetime.date(2000, 6, 1) fake.date_this_month(before_today=True, after_today=False) # datetime.date(2018, 6, 13) fake.am_pm() # 'AM' fake.past_datetime(start_date="-30d", tzinfo=None) # datetime.datetime(2018, 6, 25, 7, 41, 34) fake.date_this_year(before_today=True, after_today=False) # datetime.date(2018, 2, 24) fake.date_time_between_dates(datetime_start=None, datetime_end=None, tzinfo=None) # datetime.datetime(2018, 6, 26, 14, 40, 5) fake.date_time_ad(tzinfo=None, end_datetime=None) # datetime.datetime(673, 1, 28, 18, 17, 55) fake.date_between_dates(date_start=None, date_end=None) # datetime.date(2018, 6, 26) fake.future_datetime(end_date="+30d", tzinfo=None) # datetime.datetime(2018, 7, 4, 10, 53, 6) fake.century() # 'IX' fake.past_date(start_date="-30d", tzinfo=None) # datetime.date(2018, 5, 30) fake.time(pattern="%H:%M:%S", end_datetime=None) # '01:32:14' fake.day_of_month() # '19' fake.unix_time(end_datetime=None, start_datetime=None) # 1284297794 fake.date_time_this_year(before_now=True, after_now=False, tzinfo=None) # datetime.datetime(2018, 5, 24, 11, 25, 25) fake.date_between(start_date="-30y", end_date="today") # datetime.date(2003, 1, 11) fake.year() # '1993' fake.time_series(start_date="-30d", end_date="now", precision=None, distrib=None, tzinfo=None) # <generator object time_series at 0x7f44e702a620> # 随机产生文件 fake.file_extension(category=None) # 'xls' fake.file_name(category=None, extension=None) # '表示.csv' fake.file_path(depth=1, category=None, extension=None) # '/教育/客户.js' fake.unix_device(prefix=None) # '/dev/sdf' fake.unix_partition(prefix=None) # '/dev/vdf0' fake.mime_type(category=None) # 'multipart/form-data'
以上这篇python随机生成库faker库api实例详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
python,faker,api
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“python随机生成库faker库api实例详解”评论...
更新动态
2024年11月25日
2024年11月25日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]