举例说明
TensorFlow中的变量一般就是模型的参数。当模型复杂的时候共享变量会无比复杂。
官网给了一个case,当创建两层卷积的过滤器时,每输入一次图片就会创建一次过滤器对应的变量,但是我们希望所有图片都共享同一过滤器变量,一共有4个变量:conv1_weights,conv1_biases,conv2_weights, and conv2_biases。
通常的做法是将这些变量设置为全局变量。但是存在的问题是打破封装性,这些变量必须文档化被其他代码文件引用,一旦代码变化,调用方也可能需要变化。
还有一种保证封装性的方式是将模型封装成类。
不过TensorFlow提供了Variable Scope 这种独特的机制来共享变量。这个机制涉及两个主要函数:
tf.get_variable(<name>, <shape>, <initializer>) 创建或返回给定名称的变量 tf.variable_scope(<scope_name>) 管理传给get_variable()的变量名称的作用域
在下面的代码中,通过tf.get_variable()创建了名称分别为weights和biases的两个变量。
def conv_relu(input, kernel_shape, bias_shape): # Create variable named "weights". weights = tf.get_variable("weights", kernel_shape, initializer=tf.random_normal_initializer()) # Create variable named "biases". biases = tf.get_variable("biases", bias_shape, initializer=tf.constant_initializer(0.0)) conv = tf.nn.conv2d(input, weights, strides=[1, 1, 1, 1], padding='SAME') return tf.nn.relu(conv + biases)
但是我们需要两个卷积层,这时可以通过tf.variable_scope()指定作用域进行区分,如with tf.variable_scope("conv1")这行代码指定了第一个卷积层作用域为conv1,
在这个作用域下有两个变量weights和biases。
def my_image_filter(input_images): with tf.variable_scope("conv1"): # Variables created here will be named "conv1/weights", "conv1/biases". relu1 = conv_relu(input_images, [5, 5, 32, 32], [32]) with tf.variable_scope("conv2"): # Variables created here will be named "conv2/weights", "conv2/biases". return conv_relu(relu1, [5, 5, 32, 32], [32])
最后在image_filters这个作用域重复使用第一张图片输入时创建的变量,调用函数reuse_variables(),代码如下:
with tf.variable_scope("image_filters") as scope: result1 = my_image_filter(image1) scope.reuse_variables() result2 = my_image_filter(image2)
tf.get_variable()工作机制
tf.get_variable()工作机制是这样的:
当tf.get_variable_scope().reuse == False,调用该函数会创建新的变量
with tf.variable_scope("foo"): v = tf.get_variable("v", [1]) assert v.name == "foo/v:0"
当tf.get_variable_scope().reuse == True,调用该函数会重用已经创建的变量
with tf.variable_scope("foo"): v = tf.get_variable("v", [1]) with tf.variable_scope("foo", reuse=True): v1 = tf.get_variable("v", [1]) assert v1 is v
变量都是通过作用域/变量名来标识,后面会看到作用域可以像文件路径一样嵌套。
tf.variable_scope理解
tf.variable_scope()用来指定变量的作用域,作为变量名的前缀,支持嵌套,如下:
with tf.variable_scope("foo"): with tf.variable_scope("bar"): v = tf.get_variable("v", [1]) assert v.name == "foo/bar/v:0"
当前环境的作用域可以通过函数tf.get_variable_scope()获取,并且reuse标志可以通过调用reuse_variables()设置为True,这个非常有用,如下
with tf.variable_scope("foo"): v = tf.get_variable("v", [1]) tf.get_variable_scope().reuse_variables() v1 = tf.get_variable("v", [1]) assert v1 is v
作用域中的resuse默认是False,调用函数reuse_variables()可设置为True,一旦设置为True,就不能返回到False,并且该作用域的子空间reuse都是True。如果不想重用变量,那么可以退回到上层作用域,相当于exit当前作用域,如
with tf.variable_scope("root"): # At start, the scope is not reusing. assert tf.get_variable_scope().reuse == False with tf.variable_scope("foo"): # Opened a sub-scope, still not reusing. assert tf.get_variable_scope().reuse == False with tf.variable_scope("foo", reuse=True): # Explicitly opened a reusing scope. assert tf.get_variable_scope().reuse == True with tf.variable_scope("bar"): # Now sub-scope inherits the reuse flag. assert tf.get_variable_scope().reuse == True # Exited the reusing scope, back to a non-reusing one. assert tf.get_variable_scope().reuse == False
一个作用域可以作为另一个新的作用域的参数,如:
with tf.variable_scope("foo") as foo_scope: v = tf.get_variable("v", [1]) with tf.variable_scope(foo_scope): w = tf.get_variable("w", [1]) with tf.variable_scope(foo_scope, reuse=True): v1 = tf.get_variable("v", [1]) w1 = tf.get_variable("w", [1]) assert v1 is v assert w1 is w
不管作用域如何嵌套,当使用with tf.variable_scope()打开一个已经存在的作用域时,就会跳转到这个作用域。
with tf.variable_scope("foo") as foo_scope: assert foo_scope.name == "foo" with tf.variable_scope("bar"): with tf.variable_scope("baz") as other_scope: assert other_scope.name == "bar/baz" with tf.variable_scope(foo_scope) as foo_scope2: assert foo_scope2.name == "foo" # Not changed.
variable scope的Initializers可以创递给子空间和tf.get_variable()函数,除非中间有函数改变,否则不变。
with tf.variable_scope("foo", initializer=tf.constant_initializer(0.4)): v = tf.get_variable("v", [1]) assert v.eval() == 0.4 # Default initializer as set above. w = tf.get_variable("w", [1], initializer=tf.constant_initializer(0.3)): assert w.eval() == 0.3 # Specific initializer overrides the default. with tf.variable_scope("bar"): v = tf.get_variable("v", [1]) assert v.eval() == 0.4 # Inherited default initializer. with tf.variable_scope("baz", initializer=tf.constant_initializer(0.2)): v = tf.get_variable("v", [1]) assert v.eval() == 0.2 # Changed default initializer.
算子(ops)会受变量作用域(variable scope)影响,相当于隐式地打开了同名的名称作用域(name scope),如+这个算子的名称为foo/add
with tf.variable_scope("foo"): x = 1.0 + tf.get_variable("v", [1]) assert x.op.name == "foo/add"
除了变量作用域(variable scope),还可以显式打开名称作用域(name scope),名称作用域仅仅影响算子的名称,不影响变量的名称。另外如果tf.variable_scope()传入字符参数,创建变量作用域的同时会隐式创建同名的名称作用域。如下面的例子,变量v的作用域是foo,而算子x的算子变为foo/bar,因为有隐式创建名称作用域foo
with tf.variable_scope("foo"): with tf.name_scope("bar"): v = tf.get_variable("v", [1]) x = 1.0 + v assert v.name == "foo/v:0" assert x.op.name == "foo/bar/add"
注意: 如果tf.variable_scope()传入的不是字符串而是scope对象,则不会隐式创建同名的名称作用域。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
TENSORFLOW,变量作用域
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]