一个例子:

    print("Loading vgg19 weights...")
 
    vgg_model = VGG19(include_top=False, weights='imagenet')
 
    from_vgg = dict()  # 因为模型定义中的layer的名字与原始vgg名字不同,所以需要调整
    from_vgg['conv1_1'] = 'block1_conv1'
    from_vgg['conv1_2'] = 'block1_conv2'
    from_vgg['conv2_1'] = 'block2_conv1'
    from_vgg['conv2_2'] = 'block2_conv2'
    from_vgg['conv3_1'] = 'block3_conv1'
    from_vgg['conv3_2'] = 'block3_conv2'
    from_vgg['conv3_3'] = 'block3_conv3'
    from_vgg['conv3_4'] = 'block3_conv4'
    from_vgg['conv4_1'] = 'block4_conv1'
    from_vgg['conv4_2'] = 'block4_conv2'
 
    for layer in model.layers:
      if layer.name in from_vgg:
        vgg_layer_name = from_vgg[layer.name]
        layer.set_weights(vgg_model.get_layer(vgg_layer_name).get_weights())
        print("Loaded VGG19 layer: " + vgg_layer_name)
densenet.load_weights('model/densenet_weight/densenet_bottom.h5')
# densenet.save_weights('densenet_bottom.h5')
 
# print(densenet.weights)# 获得模型所有权值
t=densenet.get_layer('densenet_conv1/bn')
print(t)
print(densenet.get_weights()[2])

以上这篇keras获得某一层或者某层权重的输出实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
keras,权重,输出

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com