tensorflow中可以通过配置环境变量 'TF_CPP_MIN_LOG_LEVEL' 的值,控制tensorflow是否屏蔽通知信息、警告、报错等输出信息。
使用方法:
import os import tensorflow as tf os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # or any {'0', '1', '2'}
TF_CPP_MIN_LOG_LEVEL 取值 0 : 0也是默认值,输出所有信息
TF_CPP_MIN_LOG_LEVEL 取值 1 : 屏蔽通知信息
TF_CPP_MIN_LOG_LEVEL 取值 2 : 屏蔽通知信息和警告信息
TF_CPP_MIN_LOG_LEVEL 取值 3 : 屏蔽通知信息、警告信息和报错信息
测试代码:
import tensorflow as tf import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0' # os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' # os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' v1 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v1') v2 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v2') sumV12 = v1 + v2 with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess: print sess.run(sumV12)
TF_CPP_MIN_LOG_LEVEL 为 0 的输出:
2018-04-21 14:59:09.910415: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations. 2018-04-21 14:59:09.910442: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations. 2018-04-21 14:59:09.910448: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. 2018-04-21 14:59:09.910453: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. 2018-04-21 14:59:09.910457: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations. 2018-04-21 14:59:09.911260: I tensorflow/core/common_runtime/direct_session.cc:300] Device mapping: 2018-04-21 14:59:09.911816: I tensorflow/core/common_runtime/simple_placer.cc:872] add: (Add)/job:localhost/replica:0/task:0/cpu:0 2018-04-21 14:59:09.911835: I tensorflow/core/common_runtime/simple_placer.cc:872] v2: (Const)/job:localhost/replica:0/task:0/cpu:0 2018-04-21 14:59:09.911841: I tensorflow/core/common_runtime/simple_placer.cc:872] v1: (Const)/job:localhost/replica:0/task:0/cpu:0 Device mapping: no known devices. add: (Add): /job:localhost/replica:0/task:0/cpu:0 v2: (Const): /job:localhost/replica:0/task:0/cpu:0 v1: (Const): /job:localhost/replica:0/task:0/cpu:0 [ 2. 4. 6.]
值为0也是默认的输出,分为三部分,一个是警告信息说没有优化加速,二是通知信息告知操作所用的设备,三是程序中代码指定要输出的结果信息
TF_CPP_MIN_LOG_LEVEL 为 1 的输出,没有通知信息了: 2018-04-21 14:59:09.910415: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations. 2018-04-21 14:59:09.910442: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations. 2018-04-21 14:59:09.910448: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. 2018-04-21 14:59:09.910453: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. 2018-04-21 14:59:09.910457: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations. Device mapping: no known devices. add: (Add): /job:localhost/replica:0/task:0/cpu:0 v2: (Const): /job:localhost/replica:0/task:0/cpu:0 v1: (Const): /job:localhost/replica:0/task:0/cpu:0 [ 2. 4. 6.]
TF_CPP_MIN_LOG_LEVEL 为 2和3 的输出,设置为2就没有警告信息了,设置为3警告和报错信息(如果有)就都没有了:
Device mapping: no known devices. add: (Add): /job:localhost/replica:0/task:0/cpu:0 v2: (Const): /job:localhost/replica:0/task:0/cpu:0 v1: (Const): /job:localhost/replica:0/task:0/cpu:0 [ 2. 4. 6.]
以上这篇在tensorflow中实现屏蔽输出的log信息就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“在tensorflow中实现屏蔽输出的log信息”评论...
更新动态
2024年11月25日
2024年11月25日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]