读取tfrecord数据

从TFRecords文件中读取数据, 首先需要用tf.train.string_input_producer生成一个解析队列。之后调用tf.TFRecordReader的tf.parse_single_example解析器。

如下图:

关于tf.TFRecordReader()函数的用法解析

解析器首先读取解析队列,返回serialized_example对象,之后调用tf.parse_single_example操作将Example协议缓冲区(protocol buffer)解析为张量。

简单来说,一旦生成了TFRecords文件,接下来就可以使用队列(queue)读取数据了。

def read_and_decode(filename):
  #根据文件名生成一个队列
  filename_queue = tf.train.string_input_producer([filename])

  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)  #返回文件名和文件
  features = tf.parse_single_example(serialized_example,
                    features={
                      'label': tf.FixedLenFeature([], tf.int64),
                      'img_raw' : tf.FixedLenFeature([], tf.string),
                    })

  img = tf.decode_raw(features['img_raw'], tf.uint8)
  img = tf.reshape(img, [224, 224, 3])
  img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
  label = tf.cast(features['label'], tf.int32)

  return img, label

举例:

下面代码是我的程序中利用TFRecord读取格式时的代码:

关于tf.TFRecordReader()函数的用法解析

这部分只要使用对应的代码就可以,主要是知道咋回事。

以上这篇关于tf.TFRecordReader()函数的用法解析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
tf.TFRecordReader,函数

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“关于tf.TFRecordReader()函数的用法解析”
暂无“关于tf.TFRecordReader()函数的用法解析”评论...