第一种是进行多项式拟合,数学上可以证明,任意函数都可以表示为多项式形式。具体示例如下。
###拟合年龄
import numpy as np
import matplotlib.pyplot as plt
#定义x、y散点坐标
x = [10,20,30,40,50,60,70,80]
x = np.array(x)
print('x is :\n',x)
num = [174,236,305,334,349,351,342,323]
y = np.array(num)
print('y is :\n',y)
#用3次多项式拟合
f1 = np.polyfit(x, y, 3)
print('f1 is :\n',f1)
p1 = np.poly1d(f1)
print('p1 is :\n',p1)
#也可使用yvals=np.polyval(f1, x)
yvals = p1(x) #拟合y值
print('yvals is :\n',yvals)
#绘图
plot1 = plt.plot(x, y, 's',label='original values')
plot2 = plt.plot(x, yvals, 'r',label='polyfit values')
plt.xlabel('x')
plt.ylabel('y')
plt.legend(loc=4) #指定legend的位置右下角
plt.title('polyfitting')
plt.show()
2 。 第一种方案是给出具体的函数形式(可以是任意的,只要你能写的出来 下面的func就是),用最小二乘的方式去逼近和拟合,求出函数的各项系数,如下。
##使用curve_fit
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
#自定义函数 e指数形式
def func(x, a, b,c):
return a*np.sqrt(x)*(b*np.square(x)+c)
#定义x、y散点坐标
x = [20,30,40,50,60,70]
x = np.array(x)
num = [453,482,503,508,498,479]
y = np.array(num)
#非线性最小二乘法拟合
popt, pcov = curve_fit(func, x, y)
#获取popt里面是拟合系数
print(popt)
a = popt[0]
b = popt[1]
c = popt[2]
yvals = func(x,a,b,c) #拟合y值
print('popt:', popt)
print('系数a:', a)
print('系数b:', b)
print('系数c:', c)
print('系数pcov:', pcov)
print('系数yvals:', yvals)
#绘图
plot1 = plt.plot(x, y, 's',label='original values')
plot2 = plt.plot(x, yvals, 'r',label='polyfit values')
plt.xlabel('x')
plt.ylabel('y')
plt.legend(loc=4) #指定legend的位置右下角
plt.title('curve_fit')
plt.show()
拟合高斯分布的方法。
#encoding=utf-8
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import pandas as pd
#自定义函数 e指数形式
def func(x, a,u, sig):
return a*(np.exp(-(x - u) ** 2 /(2* sig **2))/(math.sqrt(2*math.pi)*sig))*(431+(4750/x))
#定义x、y散点坐标
x = [40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135]
x=np.array(x)
# x = np.array(range(20))
print('x is :\n',x)
num = [536,529,522,516,511,506,502,498,494,490,487,484,481,478,475,472,470,467,465,463]
y = np.array(num)
print('y is :\n',y)
popt, pcov = curve_fit(func, x, y,p0=[3.1,4.2,3.3])
#获取popt里面是拟合系数
a = popt[0]
u = popt[1]
sig = popt[2]
yvals = func(x,a,u,sig) #拟合y值
print(u'系数a:', a)
print(u'系数u:', u)
print(u'系数sig:', sig)
#绘图
plot1 = plt.plot(x, y, 's',label='original values')
plot2 = plt.plot(x, yvals, 'r',label='polyfit values')
plt.xlabel('x')
plt.ylabel('y')
plt.legend(loc=4) #指定legend的位置右下角
plt.title('curve_fit')
plt.show()
总结
以上所述是小编给大家介绍的python 对任意数据和曲线进行拟合并求出函数表达式的三种解决方案,希望对大家有所帮助,也非常感谢大家对网站的支持!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“python 对任意数据和曲线进行拟合并求出函数表达式的三种解决方案”评论...
更新动态
2025年10月22日
2025年10月22日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]

