tensorflow中的conv2有padding=‘SAME'这个参数。吴恩达讲课中说到当padding=(f-1)/2(f为卷积核大小)时则是SAME策略。但是这个没有考虑到空洞卷积的情况,也没有考虑到strides的情况。
查阅资料后发现网上方法比较麻烦。
手算,实验了一个早上,终于初步解决了问题。
分为两步:
填充多少
中文文档中有计算公式:
输入:
输出:
因为卷积后图片大小同卷积前,所以这里W_out=W_in, H_out=H_in。解一元一次方程即可。结果取ceil。
怎么填充
torch是先填充再卷积。conv2d的策略如此。所以我先在forward中获取上述方程需要的参数。然后使用torch.nn.functional.pad填充就好了。
然后
t2=torch.randn([1,1,4,4]) print(t2.size()) m1 = torch.nn.Conv2d(1, 1, 1, padding=(1,0)) print(m1(t2).size()) t2=F.pad(t2,(0,0,1,1)) print(t2.size())
有两个发现
pad是对称的两边都填充的,所以上述总共填充2行/列
参数中padding=(1,0)的效果,与F.pad(t2, (0,0,1,1)的效果一样。而不是与F.pad(t2,1,1,0,0)效果一样。很神奇。本来(1,0)按照解视是1是H边(左右)。0是W边(上下)。(0,0,1,1)按解释是左右不填充,上下填充。结果刚好相反。
这样应该就没什么问题了。
之后还需要看反卷积跟池化的pooling='SAME'是怎么实现的。
以上这篇基于pytorch padding=SAME的解决方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“基于pytorch padding=SAME的解决方式”评论...
更新动态
2024年11月25日
2024年11月25日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]