DFT
DFT(Discrete Fourier Transform),离散傅里叶变化,可以将离散信号变换到频域,它的公式非常简单:
如果你刚接触DFT,并且之前没有信号处理的相关经验,那么第一次看到这个公式,你可能有一些疑惑,为什么这个公式就能进行时域与频域之间的转换呢?
这里,我不打算去解释它,因为我水平有限,说的不清楚。相反,在这里我想介绍,作为一个程序员,如何如实现DFT
从矩阵的角度看DFT
DFT的公式,虽然简单,但是理解起来比较麻烦,我发现如果用矩阵相乘的角度来理解上面的公式,就会非常简单,直接上矩阵:
OK,通过上面的表示,我们很容易将DFT理解成为一种矩阵相乘的操作,这对于我们编码是很容易的。
Talk is cheap, show me the code
根据上面的理解,我们只需要构建出S SS矩阵,然后做矩阵相乘,就等得到DFT的结果
在这之前,我们先介绍如何生成正弦信号,以及如何用scipy中的fft模块进行DFT操作,以验证我们的结果是否正确
正弦信号
A: 幅度
f: 信号频率
n: 时间下标
T: 采样间隔, 等于 1/fs,fs为采样频率
"htmlcode">
import numpy as np import matplotlib.pyplot as plt %matplotlib inline
def generate_sinusoid(N, A, f0, fs, phi): ''' N(int) : number of samples A(float) : amplitude f0(float): frequency in Hz fs(float): sample rate phi(float): initial phase return x (numpy array): sinusoid signal which lenght is M ''' T = 1/fs n = np.arange(N) # [0,1,..., N-1] x = A * np.cos( 2*f0*np.pi*n*T + phi ) return x N = 511 A = 0.8 f0 = 440 fs = 44100 phi = 0 x = generate_sinusoid(N, A, f0, fs, phi) plt.plot(x) plt.show()
# 另一种生成正弦信号的方法,生成时长为t的序列 def generate_sinusoid_2(t, A, f0, fs, phi): ''' t (float) : 生成序列的时长 A (float) : amplitude f0 (float) : frequency fs (float) : sample rate phi(float) : initial phase returns x (numpy array): sinusoid signal sequence ''' T = 1.0/fs N = t / T return generate_sinusoid(N, A, f0, fs, phi) A = 1.0 f0 = 440 fs = 44100 phi = 0 t = 0.02 x = generate_sinusoid_2(t, A, f0, fs, phi) n = np.arange(0, 0.02, 1/fs) plt.plot(n, x)
Scipy FFT
介绍如何Scipy的FFT模块计算DFT
注意,理论上输入信号的长度必须是才能做FFT,而scipy中FFT却没有这样的限制
from scipy.fftpack import fft # generate sinusoid N = 511 A = 0.8 f0 = 440 fs = 44100 phi = 1.0 x = generate_sinusoid(N, A, f0, fs, phi) # fft is X = fft(x) mX = np.abs(X) # magnitude pX = np.angle(X) # phase # plot the magnitude and phase plt.subplot(2,1,1) plt.plot(mX) plt.subplot(2,1,2) plt.plot(pX) plt.show()
自己实现DFT
自己实现DFT的关键就是构造出S,有两种方式:
def generate_complex_sinusoid(k, N): ''' k (int): frequency index N (int): length of complex sinusoid in samples returns c_sin (numpy array): the generated complex sinusoid (length N) ''' n = np.arange(N) c_sin = np.exp(1j * 2 * np.pi * k * n / N) return np.conjugate(c_sin) def generate_complex_sinusoid_matrix(N): ''' N (int): length of complex sinusoid in samples returns c_sin_matrix (numpy array): the generated complex sinusoid (length N) ''' n = np.arange(N) n = np.expand_dims(n, axis=1) # 扩充维度,将1D向量,转为2D矩阵,方便后面的矩阵相乘 k = n m = n.T * k / N # [N,1] * [1, N] = [N,N] S = np.exp(1j * 2 * np.pi * m) # 计算矩阵 S return np.conjugate(S)
# 生成信号,用于测试 N = 511 A = 0.8 f0 = 440 fs = 44100 phi = 1.0 x = generate_sinusoid(N, A, f0, fs, phi) # 第一种方式计算DFT X_1 = np.array([]) for k in range(N): s = generate_complex_sinusoid(k, N) X_1 = np.append(X_1, np.sum(x * s)) mX = np.abs(X_1) pX = np.angle(X_1) # plot the magnitude and phase plt.subplot(2,1,1) plt.plot(mX) plt.subplot(2,1,2) plt.plot(pX) plt.show() # 结果和scipy的结果基本相同
# 第二种方法计算DFT S = generate_complex_sinusoid_matrix(N) X_2 = np.dot(S, x) mX = np.abs(X_2) pX = np.angle(X_2) # plot the magnitude and phase plt.subplot(2,1,1) plt.plot(mX) plt.subplot(2,1,2) plt.plot(pX) plt.show()
总结
回顾了DFT的计算公式,并尝试用矩阵相乘的角度来理解DFT
介绍了两种生成正弦信号的方法
实现了两种DFT的计算方法
完整代码在这里
以上这篇信号生成及DFT的python实现方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
信号生成,DFT,python
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]