先看看下面的几个方法:

  • star() 方法启动进程,
  • join() 方法实现进程间的同步,等待所有进程退出。
  • close() 用来阻止多余的进程涌入进程池 Pool 造成进程阻塞。

参数:

target 是函数名字,需要调用的函数

args 函数需要的参数,以 tuple 的形式传入

用法:

multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)

写一个的例子:

from multiprocessing import Pool
import os,time


def pr(str):
  print("The " + str + " is %s" %(os.getpid()))
  time.sleep(1)
  print("The " + str + " is close")


if __name__ == "__main__":

  print('-------------------------------')
  print("the current pid: "+ str(os.getpid()))
  # 默认为自己电脑的核数
  p = Pool(2)
  for i in range(5):
    p.apply_async(pr,args=('xdxd',))
  p.close()
  p.join()
  print("----------close-----------------")

通过结果可以看出,是2个进程同时启动,同时启动的进程数与pool中设置的数量和自己电脑的核数有关

结果:

-------------------------------
the current pid: 9562
The xdxd is 9563
The xdxd is 9564
The xdxd is close
The xdxd is close
The xdxd is 9563
The xdxd is 9564
The xdxd is close
The xdxd is close
The xdxd is 9563
The xdxd is close
----------close-----------------

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
Python,进程,Multiprocessing,模块

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“Python进程Multiprocessing模块原理解析”
暂无“Python进程Multiprocessing模块原理解析”评论...