在python 较新的版本中,pandas.qcut()这个函数中是有duplicates这个参数的,它能解决在等频分箱中遇到的重复值过多引起报错的问题;
在比较旧版本的python中,提供一下解决办法:
import pandas as pd def pct_rank_qcut(series, n): ''' series:要分箱的列 n:箱子数 ''' edages = pd.series([i/n for i in range(n)] # 转换成百分比 func = lambda x: (edages >= x).argmax() #函数:(edages >= x)返回fasle/true列表中第一次出现true的索引值 return series.rank(pct=1).astype(float).apply(func) #series.rank(pct=1)每个值对应的百分位数,最终返回对应的组数;rank()函数传入的数据类型若为object,结果会有问题,因此进行了astype
补充拓展:Python数据离散化:等宽及等频
在处理数据时,我们往往需要将连续性变量进行离散化,最常用的方式便是等宽离散化,等频离散化,在此处我们讨论离散化的概念,只给出在python中的实现以供参考
1. 等宽离散化
使用pandas中的cut()函数进行划分
import numpy as np import pandas as pd # Discretization: Equal Width # # Datas: Sample * Feature def Discretization_EqualWidth(K, Datas, FeatureNumber): DisDatas = np.zeros_like(Datas) for i in range(FeatureNumber): DisOneFeature = pd.cut(Datas[:, i], K, labels=range(1, K+1)) DisDatas[:, i] = DisOneFeature return DisDatas
2. 等频离散化
pandas中有qcut()可以使用,但是边界易出现重复值,如果为了删除重复值设置 duplicates=‘drop',则易出现于分片个数少于指定个数的问题,因此在此处不使用qcut()
import numpy as np import pandas as pd # Discretization: Equal Frequency # # vector: single feature def Rank_qcut(vector, K): quantile = np.array([float(i) / K for i in range(K + 1)]) # Quantile: K+1 values funBounder = lambda x: (quantile >= x).argmax() return vector.rank(pct=True).apply(funBounder) # Discretization: Equal Frequency # # Datas: Sample * Feature def Discretization_EqualFrequency(K, Datas, FeatureNumber): DisDatas = np.zeros_like(Datas) w = [float(i) / K for i in range(K + 1)] for i in range(FeatureNumber): DisOneFeature = Rank_qcut(pd.Series(Datas[:, i]), K) #print(DisOneFeature) DisDatas[:, i] = DisOneFeature return DisDatas
以上这篇基于python 等频分箱qcut问题的解决就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
python,等频分箱,qcut
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“基于python 等频分箱qcut问题的解决”评论...
更新动态
2024年11月25日
2024年11月25日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]