为了了解(正态)分布的方法和属性,我们首先引入norm

 >from scipy.stats import norm
 >rv = norm()
 >dir(rv) # reformatted
[‘__class__', ‘__delattr__', ‘__dict__', ‘__doc__', ‘__getattribute__',
‘__hash__', ‘__init__', ‘__module__', ‘__new__', ‘__reduce__', ‘__reduce_ex__',
‘__repr__', ‘__setattr__', ‘__str__', ‘__weakref__', ‘args', ‘cdf', ‘dist',
‘entropy', ‘isf', ‘kwds', ‘moment', ‘pdf', ‘pmf', ‘ppf', ‘rvs', ‘sf', ‘stats']

其中,连续随机变量的主要公共方法如下:

"htmlcode">

 >norm.cdf(0)
0.5
>norm.mean(), norm.std(), norm.var()
(0.0, 1.0, 1.0)

重点来了,cdf的逆竟然也可以求,这个方法就是ppf

>norm.ppf(0.5)
0.0

离散分布中,pdf被更换为密度函数pmf,而cdf的逆也有所不同:

ppf(q) = min{x : cdf(x) >= q, x integer}

此外,fit可以求分布参数的极大似然估计,包括location与scale,nnlf可以求负对数似然函数,expect可以计算函数pdf或pmf的期望值。

以上这篇在python中求分布函数相关的包实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
python,分布函数,相关包

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“在python中求分布函数相关的包实例”
暂无“在python中求分布函数相关的包实例”评论...