因为需要一个html形式的数据统计界面,所以做了一个基于pyecharts包的可视化程序,当然matplotlib还是常用的数据可视化包,只不过各有优劣;基本功能概述就是读取csv文件数据,对每列进行数据统计并可视化,最后形成html动态界面,选择pyecharts的最主要原因就是这个动态界面简直非常炫酷。
先上成品图:
数据读取和数据分析模块:
#导入csv模块
import csv
#导入可视化模块
from matplotlib import pyplot as plt
from pylab import mpl
import numpy as np
import random
from pyecharts import Line,Pie,Grid,Bar,WordCloud
#指定文件名,然后使用 with open() as 打开
python_file = 'haiyang.csv'
#filename = 'release/111.csv'
#python3 LieCharts.py test_chart --python_file 'haiyang.csv'
with open(python_file) as f:
    #创建一个阅读器:将f传给csv.reader
    reader = csv.reader(f)
    #使用csv的next函数,将reader传给next,将返回文件的下一行
    header_row = next(reader)
    for index, column_header in enumerate(header_row):
        print(index, column_header)
    #读取置信度
    #创建置信度的列表
    confidences =[]
    #创建风险等级数组
    highRisk = []
    middleRisk = []
    lowRisk = []
    noRisk = []
    person = []
    #创建时间点
    timePoint = []
    #文件信息
    fileInformation = []
    #遍历reader的余下的所有行(next读取了第一行,reader每次读取后将返回下一行)
    for row in reader:
    # 下面就是对某一列数据进行遍历,因为项目保密,就不列出具体代码了,其实就是各种循环语句,大家根据自己的数据简单写一下就行
            
    fileInformation.append('某某某某')
    fileInformation.append(row[0])
    fileInformation.append(row[1])
    fileInformation.append(row[2])
    fileInformation.append(len(confidences))
    int_confidences = []
    for i in confidences:
  # 同上
    len_noRisk = len(noRisk)
    len_lowRisk = len(lowRisk)
    len_middleRisk = len(middleRisk)
    len_highRisk = len(highRisk)
    len_person = len(person)
    total = int(len_person+len_highRisk+len_middleRisk+len_lowRisk+len_noRisk)
    if (len_highRisk > total/2):
  # 同上
数据可视化模块:
pie_title = Pie('某某某分析报表', "", title_pos='center',title_top="1%",title_text_size=42,subtitle_text_size=20)
value=[10000,6181,4386,4055,4000]
wordcloud=WordCloud(width=30,height=12,title="某某某某信息",title_pos="22%",title_top="12%",title_text_size=32)
wordcloud1=WordCloud(width=30,height=12,title="某某:"+fileInformation[1],title_pos="22%",title_top="22%",title_text_size=26)
wordcloud2=WordCloud(width=30,height=12,title="某某:"+fileInformation[2],title_pos="22%",title_top="30%",title_text_size=26)
#wordcloud3=WordCloud(width=30,height=12,title="音频采样率:"+fileInformation[3],title_pos="22%",title_top="38%",title_text_size=26)
#wordcloud4=WordCloud(width=30,height=12,title="总时长/s:"+fileInformation[4],title_pos="22%",title_top="36%",title_text_size=32)
# wordcloud.add("",fileInformation,value,word_size_range=[20,100],rotate_step=3
#        ,xaxis_pos=200,grid_left="1%",grid_bottom="50%",grid_top="5%",grid_right="80%")
#折线图
line=Line("某某某某某走势图",title_pos='center',title_top="51%",title_text_size=32,width=600,height = 20)
attr=timePoint
line.add("某某某某某",attr,int_confidences,legend_pos="85%",legend_top="54%",
    mark_point=["max","min"],mark_line=["average"])
#饼图
attr=["某某某某", "某某某某", "某某某某", "某某某"]
v1=[len_highRisk, len_middleRisk, len_lowRisk,len_noRisk]
pie=Pie("某某某某某某某",title_pos="65%",title_top="12%",title_text_size=32,width=100,height = 100)
pie.add("",attr,v1,radius=[0,30],center=[71,35],
    legend_pos="85%",legend_top="20%" ,legend_orient="vertical")
grid=Grid(width = 1800 ,height= 900)#调整画布大小
grid.add(line,grid_left="5%",grid_bottom="2%",grid_top="60%")
grid.add(pie_title,grid_bottom="10%")
grid.add(wordcloud,grid_left="1%",grid_bottom="50%",grid_top="5%",grid_right="80%")
grid.add(wordcloud1,grid_left="1%",grid_bottom="50%",grid_top="5%",grid_right="80%")
grid.add(wordcloud2,grid_left="1%",grid_bottom="50%",grid_top="5%",grid_right="80%")
#grid.add(wordcloud3,grid_left="1%",grid_bottom="50%",grid_top="5%",grid_right="80%")
#grid.add(wordcloud4,grid_left="1%",grid_bottom="50%",grid_top="5%",grid_right="80%")
grid.add(pie,grid_left="50%",grid_bottom="50%")
#grid.render()
grid.render(path='./release/XXXX.html')
根据需求这个还可以跨平台跨语言调用,比如C++程序调用python进行数据分析。
                                免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
                                如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
                            
                        暂无“利用pyecharts读取csv并进行数据统计可视化的实现”评论...
                                    稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
2025年11月04日
                                2025年11月04日
                    - 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
 - 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
 - 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
 - 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
 - 群星《2024好听新歌42》AI调整音效【WAV分轨】
 - 王思雨-《思念陪着鸿雁飞》WAV
 - 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
 - 李健《无时无刻》[WAV+CUE][590M]
 - 陈奕迅《酝酿》[WAV分轨][502M]
 - 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
 - 群星《吉他王(黑胶CD)》[WAV+CUE]
 - 齐秦《穿乐(穿越)》[WAV+CUE]
 - 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
 - 邝美云《邝美云精装歌集》[DSF][1.6G]
 - 吕方《爱一回伤一回》[WAV+CUE][454M]
 
                        