近期,又有接触到pyecharts这个包的使用,后面发现这个曾经好用的包发生了一些变化,为了方便大家的使用,这里整理如下:
绘图风格theme:默认WHITE
LIGHT, DARK, WHITE, CHALK, ESSOS, INFOGRAPHIC, MACARONS, PURPLE_PASSION, ROMA, ROMANTIC, SHINE, VINTAGE, WALDEN, WESTEROS, WONDERLAND
1.柱状图绘制
1.1 最基础的柱状图
from pyecharts.charts import Bar,Grid
from pyecharts import options as opts
from pyecharts.globals import ThemeType
import random
import numpy as np
# 准备数据
name=["A","B","C","D"]
salery=[random.randint(3000,5000) for i in range(4)]
#绘图
bar=Bar(init_opts = opts.InitOpts(width='600px',height='400px'))
bar.add_xaxis(name)
bar.add_yaxis("salery",salery)
bar.set_global_opts(title_opts=opts.TitleOpts(title="收入情况"))
#仅在notebook中显示
bar.render_notebook()
#在HTML中显示
bar.render("收入情况")
效果图:
1.2 稍微复杂的柱状图
为了减少代码量,此处不再导入包。绘制收入和消费情况,并使用新风格,并添加副标题,使用新版本的链式写法。
#准备数据
name=["A","B","C","D"]
salery=[random.randint(3000,5000) for i in range(4)]
cost=[random.randint(1000,2000) for i in range(4)]
#绘图
bar=(
Bar(init_opts = opts.InitOpts(width='600px',height='400px',theme=ThemeType.LIGHT))
.add_xaxis(name)
.add_yaxis("salery",salery)
.add_yaxis("cost",cost)
.set_global_opts(title_opts=opts.TitleOpts(title="收入及消费情况",subtitle="随机样本"))
)
bar.render_notebook()
#效果图:
1.3 堆叠式柱状图
使用堆叠式柱状图(部分堆叠),并自定义颜色,修改图例的显示位置,不显示数字,改变背景颜色
#准备数据
name=["A","B","C","D"]
salery=[random.randint(3000,5000) for i in range(4)]
cost=[random.randint(1000,2000) for i in range(4)]
#所在城市平均薪水
salery_ave=[random.randint(3000,4000) for i in range(4)]
colors=["#007892","#ff427f","#fc8210","#ffd8a6"]
#进行绘图
bar=(
Bar(init_opts = opts.InitOpts(width='600px',height='400px',bg_color=colors[-1]))
.add_xaxis(name)
.add_yaxis("salery",salery,stack="stack_one")
.add_yaxis("cost",cost,stack="stack_one")
.add_yaxis("salery_ave",salery_ave)
.set_colors(colors)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(title_opts=opts.TitleOpts(title="收入、消费及其城市平均收入情况"),
legend_opts=opts.LegendOpts(type_="scroll", pos_right="right", orient="vertical")
)
)
bar.render_notebook()
效果展示:
1.3.1 调整标题与图的位置
grid=Grid() # 分别调整上下左右的位置,参数为像素值或百分比 grid.add(bar,grid_opts=opts.GridOpts(pos_top="30%",pos_bottom="10%",pos_left="10%",pos_right="10%")) grid.render_notebook()
效果演示
1.4 绘制簇状图
#准备数据
name=["A","B","C","D"]
salery=[random.randint(3000,5000) for i in range(4)]
cost=[random.randint(1000,2000) for i in range(4)]
#所在城市平均薪水
salery_ave=[random.randint(3000,4000) for i in range(4)]
colors=["#007892","#ff427f","#fc8210","#ffd8a6"]
#进行绘图
bar=(
Bar(init_opts = opts.InitOpts(width='600px',height='400px',bg_color=colors[-1]))
.add_xaxis(name)
.add_yaxis("salery",salery)
.add_yaxis("salery_ave",salery_ave)
.reversal_axis()
.set_colors(colors)
.set_series_opts(label_opts=opts.LabelOpts(position="right"))
.set_global_opts(title_opts=opts.TitleOpts(title="收入、消费及其城市平均收入情况"),
legend_opts=opts.LegendOpts(type_="scroll", pos_right="right", orient="vertical")
)
)
bar.render_notebook()
效果图演示
1.5 数据量大时的显示方法
#准备数据
name=[chr(i) for i in range(65,85,1)]
salery=[random.randint(3000,5000) for i in range(20)]
#所在城市平均薪水
salery_ave=[random.randint(3000,4000) for i in range(20)]
colors=["#007892","#ff427f","#fc8210","#ffd8a6"]
#绘图 修改 orient为vertical,可将滑动按钮移动垂直方向
bar=(
Bar(init_opts = opts.InitOpts(width='600px',height='400px',bg_color=colors[-1]))
.add_xaxis(name)
.add_yaxis("salery",salery)
.add_yaxis("salery_ave",salery_ave)
.set_colors(colors)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(title_opts=opts.TitleOpts(title="收入、消费及其城市平均收入情况"),
legend_opts=opts.LegendOpts(type_="scroll", pos_right="right", orient="vertical"),
datazoom_opts=[opts.DataZoomOpts(type_="slider")]
)
)
bar.render_notebook()
演示效果:
2.绘制散点图
2.1 普通散点图
import random
from pyecharts import options as opts
from pyecharts.charts import Scatter
from pyecharts.globals import ThemeType
#准备数据
name=["A","B","C","D"]
salery=[random.randint(3000,5000) for i in range(4)]
cost=[random.randint(1000,2000) for i in range(4)]
#所在城市平均薪水
salery_ave=[random.randint(3000,4000) for i in range(4)]
colors=["#007892","#ff427f","#fc8210","#ffd8a6"]
#进行绘图
scatter=(Scatter(init_opts = opts.InitOpts(width='600px',height='400px',theme=ThemeType.DARK))
.add_xaxis(name)
.add_yaxis("salery",salery)
.add_yaxis("cost",cost)
.set_global_opts(title_opts=opts.TitleOpts(title="收入与消费情况")))
scatter.render_notebook()
查看效果:
2.2 3D散点图绘制
import random
from pyecharts import options as opts
from pyecharts.charts import Scatter3D
from pyecharts.faker import Faker
#准备数据
data = [(random.randint(0,100),random.randint(0,100),random.randint(0,100)) for i in range(50)]
name=["长","宽","高"]
#绘图
scatter3D=Scatter3D(init_opts = opts.InitOpts(width='600px',height='400px')) #初始化
scatter3D.add(name,data,
grid3d_opts=opts.Grid3DOpts(
width=100, depth=100
))
scatter3D.set_global_opts(title_opts=opts.TitleOpts(title="散点图"),
visualmap_opts=opts.VisualMapOpts(
range_color=Faker.visual_color #颜色映射
))
scatter3D.render_notebook()
效果图:
2.3 带涟漪的散点图
symbol的类型:
“pin”,“rect”,“roundRect”,“diamond”,“arrow”,“triangle”
import random
from pyecharts import options as opts
from pyecharts.charts import EffectScatter
from pyecharts.globals import ThemeType
#准备数据
name=["A","B","C","D"]
salery=[random.randint(3000,5000) for i in range(4)]
cost=[random.randint(1000,2000) for i in range(4)]
#所在城市平均薪水
salery_ave=[random.randint(3000,4000) for i in range(4)]
colors=["#007892","#ff427f","#fc8210","#ffd8a6"]
#进行绘图
scatter=(EffectScatter(init_opts = opts.InitOpts(width='600px',height='400px',theme=ThemeType.DARK))
.add_xaxis(name)
.add_yaxis("salery",salery,symbol="pin",symbol_size=20,symbol_rotate=180)
.add_yaxis("cost",cost,symbol="rect",symbol_size=20)
.set_global_opts(title_opts=opts.TitleOpts(title="收入与消费情况"),
xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True)), #添加网格
yaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=True))
)
.set_series_opts(effect_opts=opts.EffectOpts(scale=3,period=2)) #调整涟漪的范围和周期
)
scatter.render_notebook()
效果图如下:
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新动态
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]








