从一个通道的图片进行卷积生成新的单通道图的过程很容易理解,对于多个通道卷积后生成多个通道的图理解起来有点抽象。本文以通俗易懂的方式讲述卷积,并辅以图片解释,能快速理解卷积的实现原理。最后手写python代码实现卷积过程,让Tensorflow卷积在我们面前不再是黑箱子!
注意:
本文只针对batch_size=1,padding='SAME',stride=[1,1,1,1]进行实验和解释,其他如果不是这个参数设置,原理也是一样。
1 Tensorflow卷积实现原理
先看一下卷积实现原理,对于in_c个通道的输入图,如果需要经过卷积后输出out_c个通道图,那么总共需要in_c * out_c个卷积核参与运算。参考下图:
如上图,输入为[h:5,w:5,c:4],那么对应输出的每个通道,需要4个卷积核。上图中,输出为3个通道,所以总共需要3*4=12个卷积核。对于单个输出通道中的每个点,取值为对应的一组4个不同的卷积核经过卷积计算后的和。
接下来,我们以输入为2个通道宽高分别为5的输入、3*3的卷积核、1个通道宽高分别为5的输出,作为一个例子展开。
2个通道,5*5的输入定义如下:
#输入,shape=[c,h,w] input_data=[ [[1,0,1,2,1], [0,2,1,0,1], [1,1,0,2,0], [2,2,1,1,0], [2,0,1,2,0]], [[2,0,2,1,1], [0,1,0,0,2], [1,0,0,2,1], [1,1,2,1,0], [1,0,1,1,1]], ]
对于输出为1通道map,根据前面计算方法,需要2*1个卷积核。定义卷积核如下:
#卷积核,shape=[in_c,k,k]=[2,3,3] weights_data=[ [[ 1, 0, 1], [-1, 1, 0], [ 0,-1, 0]], [[-1, 0, 1], [ 0, 0, 1], [ 1, 1, 1]] ]
上面定义的数据,在接下来的计算对应关系将按下图所描述的方式进行。
由于Tensorflow定义的tensor的shape为[n,h,w,c],这里我们可以直接把n设为1,即batch size为1。还有一个问题,就是我们刚才定义的输入为[c,h,w],所以需要将[c,h,w]转为[h,w,c]。转换方式如下,注释已经解释很详细,这里不再解释。
def get_shape(tensor): [s1,s2,s3]= tensor.get_shape() s1=int(s1) s2=int(s2) s3=int(s3) return s1,s2,s3 def chw2hwc(chw_tensor): [c,h,w]=get_shape(chw_tensor) cols=[] for i in range(c): #每个通道里面的二维数组转为[w*h,1]即1列 line = tf.reshape(chw_tensor[i],[h*w,1]) cols.append(line) #横向连接,即将所有竖直数组横向排列连接 input = tf.concat(cols,1)#[w*h,c] #[w*h,c]-->[h,w,c] input = tf.reshape(input,[h,w,c]) return input
同理,Tensorflow使用卷积核的时候,使用的格式是[k,k,in_c,out_c]。而我们在定义卷积核的时候,是按[in_c,k,k]的方式定义的,这里需要将[in_c,k,k]转为[k,k,in_c],由于为了简化工作量,我们规定输出为1个通道,即out_c=1。所以这里我们可以直接简单地对weights_data调用chw2hwc,再在第3维度扩充一下即可。
接下来,贴出完整的代码:
import tensorflow as tf import numpy as np input_data=[ [[1,0,1,2,1], [0,2,1,0,1], [1,1,0,2,0], [2,2,1,1,0], [2,0,1,2,0]], [[2,0,2,1,1], [0,1,0,0,2], [1,0,0,2,1], [1,1,2,1,0], [1,0,1,1,1]], ] weights_data=[ [[ 1, 0, 1], [-1, 1, 0], [ 0,-1, 0]], [[-1, 0, 1], [ 0, 0, 1], [ 1, 1, 1]] ] def get_shape(tensor): [s1,s2,s3]= tensor.get_shape() s1=int(s1) s2=int(s2) s3=int(s3) return s1,s2,s3 def chw2hwc(chw_tensor): [c,h,w]=get_shape(chw_tensor) cols=[] for i in range(c): #每个通道里面的二维数组转为[w*h,1]即1列 line = tf.reshape(chw_tensor[i],[h*w,1]) cols.append(line) #横向连接,即将所有竖直数组横向排列连接 input = tf.concat(cols,1)#[w*h,c] #[w*h,c]-->[h,w,c] input = tf.reshape(input,[h,w,c]) return input def hwc2chw(hwc_tensor): [h,w,c]=get_shape(hwc_tensor) cs=[] for i in range(c): #[h,w]-->[1,h,w] channel=tf.expand_dims(hwc_tensor[:,:,i],0) cs.append(channel) #[1,h,w]...[1,h,w]---->[c,h,w] input = tf.concat(cs,0)#[c,h,w] return input def tf_conv2d(input,weights): conv = tf.nn.conv2d(input, weights, strides=[1, 1, 1, 1], padding='SAME') return conv def main(): const_input = tf.constant(input_data , tf.float32) const_weights = tf.constant(weights_data , tf.float32 ) input = tf.Variable(const_input,name="input") #[2,5,5]------>[5,5,2] input=chw2hwc(input) #[5,5,2]------>[1,5,5,2] input=tf.expand_dims(input,0) weights = tf.Variable(const_weights,name="weights") #[2,3,3]-->[3,3,2] weights=chw2hwc(weights) #[3,3,2]-->[3,3,2,1] weights=tf.expand_dims(weights,3) #[b,h,w,c] conv=tf_conv2d(input,weights) rs=hwc2chw(conv[0]) init=tf.global_variables_initializer() sess=tf.Session() sess.run(init) conv_val = sess.run(rs) print(conv_val[0]) if __name__=='__main__': main()
上面代码有几个地方需要提一下,
由于输出通道为1,因此可以对卷积核数据转换的时候直接调用chw2hwc,如果输入通道不为1,则不能这样完成转换。
输入完成chw转hwc后,记得在第0维扩充维数,因为卷积要求输入为[n,h,w,c]
为了方便我们查看结果,记得将hwc的shape转为chw
执行上面代码,运行结果如下:
[[ 2. 0. 2. 4. 0.] [ 1. 4. 4. 3. 5.] [ 4. 3. 5. 9. -1.] [ 3. 4. 6. 2. 1.] [ 5. 3. 5. 1. -2.]]
这个计算结果是怎么计算出来的?为了让大家更清晰的学习其中细节,我特地制作了一个GIF图,看完这个图后,如果你还看不懂卷积的计算过程,你可以来打我。。。。
2 手写Python代码实现卷积
自己实现卷积时,就无须将定义的数据[c,h,w]转为[h,w,c]了。
import numpy as np input_data=[ [[1,0,1,2,1], [0,2,1,0,1], [1,1,0,2,0], [2,2,1,1,0], [2,0,1,2,0]], [[2,0,2,1,1], [0,1,0,0,2], [1,0,0,2,1], [1,1,2,1,0], [1,0,1,1,1]] ] weights_data=[ [[ 1, 0, 1], [-1, 1, 0], [ 0,-1, 0]], [[-1, 0, 1], [ 0, 0, 1], [ 1, 1, 1]] ] #fm:[h,w] #kernel:[k,k] #return rs:[h,w] def compute_conv(fm,kernel): [h,w]=fm.shape [k,_]=kernel.shape r=int(k/2) #定义边界填充0后的map padding_fm=np.zeros([h+2,w+2],np.float32) #保存计算结果 rs=np.zeros([h,w],np.float32) #将输入在指定该区域赋值,即除了4个边界后,剩下的区域 padding_fm[1:h+1,1:w+1]=fm #对每个点为中心的区域遍历 for i in range(1,h+1): for j in range(1,w+1): #取出当前点为中心的k*k区域 roi=padding_fm[i-r:i+r+1,j-r:j+r+1] #计算当前点的卷积,对k*k个点点乘后求和 rs[i-1][j-1]=np.sum(roi*kernel) return rs def my_conv2d(input,weights): [c,h,w]=input.shape [_,k,_]=weights.shape outputs=np.zeros([h,w],np.float32) #对每个feature map遍历,从而对每个feature map进行卷积 for i in range(c): #feature map==>[h,w] f_map=input[i] #kernel ==>[k,k] w=weights[i] rs =compute_conv(f_map,w) outputs=outputs+rs return outputs def main(): #shape=[c,h,w] input = np.asarray(input_data,np.float32) #shape=[in_c,k,k] weights = np.asarray(weights_data,np.float32) rs=my_conv2d(input,weights) print(rs) if __name__=='__main__': main()
代码无须太多解释,直接看注释。然后跑出来的结果如下:
[[ 2. 0. 2. 4. 0.] [ 1. 4. 4. 3. 5.] [ 4. 3. 5. 9. -1.] [ 3. 4. 6. 2. 1.] [ 5. 3. 5. 1. -2.]]
对比发现,跟Tensorflow的卷积结果是一样的。
3 小结
本文中,我们学习了Tensorflow的卷积实现原理,通过也通过python代码实现了输出通道为1的卷积,其实输出通道数不影响我们学习卷积原理。后面如果有机会的话,我们去实现一个更加健全,完整的卷积。
以上这篇Tensorflow卷积实现原理+手写python代码实现卷积教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]