我就废话不多说了,大家还是直接看代码吧!

import PIL.Image
import numpy
import os
import shutil
def sum_right(path):
 img = PIL.Image.open(path)
 array = numpy.array(img)
 num = array.sum(axis=0)
 print(type(num))
 res_left = 0
 res_right = 0
 for i in range(256,512):
  res_right += num[i]
 print(res_right)

if __name__ == '__main__':
 dir2 = r"C:\Users\Howsome\Desktop\tst"
 dir1 = r"C:\Users\Howsome\Desktop\AB"
 names = os.listdir(dir1)
 n = len(names)
 print("文件数量",n)
 res = 0
 average_5 = 25565356
 average_25 = 26409377
 average_5_right = 10006019
 #average_tmp = (average_25+average_5)//2
 count = 0
 #show(os.path.join(dir1, "uni4F6C.png"))
 for i in range(n):
  #取图片
  img = PIL.Image.open(os.path.join(dir1,names[i]))
  file = os.path.join(dir1,names[i])
  rmfile = os.path.join(dir2,names[i])
  array = numpy.array(img)
  num = array.sum(axis=0)
  res_right = 0
  for i in range(256, 512):
   res_right += num[i]
  average_5_right += res_right/n

  if res_right > average_5_right:
    shutil.copyfile(file, rmfile)
    os.remove(file)
    count += 1
 print(average_5_right)
 print(count)

补充知识:python遍历灰度图像像素方法总结

啥也不说了,看代码吧!

import numpy as np
import matplotlib.pyplot as plt
import cv2
import time

img = cv2.imread('lena.jpg',0)

# 以遍历每个像素取反为例

# 方法1
t1 = time.time()
img1 = np.copy(img)
rows,cols = img1.shape[:2]
for row in range(rows):
 for col in range(cols):
  img[row,col] = 255 - img[row,col]
t2 = time.time()
print('方法1所需时间:',t2-t1)

# 方法2
t3 = time.time()
img2 = np.copy(img)
rows,cols = img2.shape[:2]
img2 = img2.reshape(rows*cols)
# print(img2)
for i in range(rows*cols):
 img2[i] = 255-img2[i]
img2 = img2.reshape(rows,cols)
# print(img2)
t4 = time.time()
print('方法2所需时间:',t4-t3)

# 方法3
t5 = time.time()
img3 = np.copy(img)
# 使用多维迭代生成器
for (x,y), pixel in np.ndenumerate(img3):
 img3[x,y] = 255-pixel
t6 = time.time()
print('方法3所需时间:',t6-t5)

测试结果:

方法1所需时间: 0.14431977272033691
方法2所需时间: 0.13863205909729004
方法3所需时间: 0.24196243286132812

以上这篇用python按照图像灰度值统计并筛选图片的操作(PIL,shutil,os)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
python,图像灰度值,筛选图片

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。