有两种方式直接把模型的参数梯度设成0:

model.zero_grad()
optimizer.zero_grad()#当optimizer=optim.Optimizer(model.parameters())时,两者等效

如果想要把某一Variable的梯度置为0,只需用以下语句:

Variable.grad.data.zero_()

补充知识:PyTorch中在反向传播前为什么要手动将梯度清零?optimizer.zero_grad()的意义

optimizer.zero_grad()意思是把梯度置零,也就是把loss关于weight的导数变成0.

在学习pytorch的时候注意到,对于每个batch大都执行了这样的操作:

optimizer.zero_grad()             ## 梯度清零
preds = model(inputs)             ## inference
loss = criterion(preds, targets)  ## 求解loss
loss.backward()                   ## 反向传播求解梯度
optimizer.step()                  ## 更新权重参数

1、由于pytorch的动态计算图,当我们使用loss.backward()和opimizer.step()进行梯度下降更新参数的时候,梯度并不会自动清零。并且这两个操作是独立操作。

2、backward():反向传播求解梯度。

3、step():更新权重参数。

基于以上几点,正好说明了pytorch的一个特点是每一步都是独立功能的操作,因此也就有需要梯度清零的说法,如若不显示的进 optimizer.zero_grad()这一步操作,backward()的时候就会累加梯度。

以上这篇Pytorch实现将模型的所有参数的梯度清0就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
pytorch,L2,L1,自定义优化器

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“Pytorch实现将模型的所有参数的梯度清0”
暂无“Pytorch实现将模型的所有参数的梯度清0”评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。