在使用keras搭建神经网络时,有时需要查看一下预测值和真是值的具体数值,然后可以进行一些其他的操作。这几天查阅了很多资料。好像没办法直接access到训练时的数据。所以我们可以通过回调函数,传入新的数据,然后查看预测值和真是值。
参考这篇解决:
https://stackoverflow.com/questions/47079111/create-keras-callback-to-save-model-predictions-and-targets-for-each-batch-durin
我的解决方法是这样的:
from keras.callbacks import Callback import tensorflow as tf import numpy as np class my_callback(Callback): def __init__(self,dataGen,showTestDetail=True): self.dataGen=dataGen self.showTestDetail=showTestDetail self.predhis = [] self.targets = [] def mape(self,y,predict): diff = np.abs(np.array(y) - np.array(predict)) return np.mean(diff / y) def on_epoch_end(self, epoch, logs=None): x_test,y_test=next(self.dataGen) prediction = self.model.predict(x_test) self.predhis.append(prediction) #print("Prediction shape: {}".format(prediction.shape)) #print("Targets shape: {}".format(y_test.shape)) if self.showTestDetail: for index,item in enumerate(prediction): print(item,"=====",y_test[index],"====",y_test[index]-item) testLoss=self.mape(y_test,prediction) print("test loss is :{}".format(testLoss))
画一下知识点,我们在继承的callback中实现 on_epoch_end方法:
x_test,y_test=next(self.dataGen)
这个数据生成方法是这样的
import numpy as np def shuffleDatas(x,y): shuffleIndex=np.arange(len(x)) np.random.shuffle(shuffleIndex) x=x[shuffleIndex] y=y[shuffleIndex] return x,y def dataGen(x,y,batchsize=8,shuffle=True): assert len(x) == len(y) while True: if shuffle: x,y=shuffleDatas(x,y) index=0 while index+batchsize<len(x): yield (x[index:index+batchsize],y[index:index+batchsize]) index=index+batchsize
使用yield可以减少内存的使用,而且显得很高级。
补充知识:keras从训练到预测,函数的选择:fit,fit_generator, predict,predict_generator
如下所示:
留下回调函数和如何通过预处理来建立生成输入的函数这两个问题
以上这篇keras输出预测值和真实值方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
keras,输出,预测值,真实值
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新动态
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]