解决了以下错误:
1.ValueError: Input 0 is incompatible with layer conv1d_1: expected ndim=3, found ndim=4
2.ValueError: Error when checking target: expected dense_3 to have 3 dimensions, but got array with …
1.ValueError: Input 0 is incompatible with layer conv1d_1: expected ndim=3, found ndim=4
错误代码:
model.add(Conv1D(8, kernel_size=3, strides=1, padding='same', input_shape=(x_train.shape))
或者
model.add(Conv1D(8, kernel_size=3, strides=1, padding='same', input_shape=(x_train.shape[1:])))
这是因为模型输入的维数有误,在使用基于tensorflow的keras中,cov1d的input_shape是二维的,应该:
1、reshape x_train的形状
x_train=x_train.reshape((x_train.shape[0],x_train.shape[1],1))
x_test = x_test.reshape((x_test.shape[0], x_test.shape[1],1))
2、改变input_shape
model = Sequential()
model.add(Conv1D(8, kernel_size=3, strides=1, padding='same', input_shape=(x_train.shape[1],1)))
大神原文:
The input shape is wrong, it should be input_shape = (1, 3253) for Theano or (3253, 1) for TensorFlow. The input shape doesn't include the number of samples.
Then you need to reshape your data to include the channels axis:
x_train = x_train.reshape((500000, 1, 3253))
Or move the channels dimension to the end if you use TensorFlow. After these changes it should work.
2.ValueError: Error when checking target: expected dense_3 to have 3 dimensions, but got array with …
出现此问题是因为ylabel的维数与x_train x_test不符,既然将x_train x_test都reshape了,那么也需要对y进行reshape。
解决办法:
同时对照x_train改变ylabel的形状
t_train=t_train.reshape((t_train.shape[0],1))
t_test = t_test.reshape((t_test.shape[0],1))
附:
修改完的代码:
import warnings warnings.filterwarnings("ignore") import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" import pandas as pd import numpy as np import matplotlib # matplotlib.use('Agg') import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn import preprocessing from keras.models import Sequential from keras.layers import Dense, Dropout, BatchNormalization, Activation, Flatten, Conv1D from keras.callbacks import LearningRateScheduler, EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras import optimizers from keras.regularizers import l2 from keras.models import load_model df_train = pd.read_csv('./input/train_V2.csv') df_test = pd.read_csv('./input/test_V2.csv') df_train.drop(df_train.index[[2744604]],inplace=True)#去掉nan值 df_train["distance"] = df_train["rideDistance"]+df_train["walkDistance"]+df_train["swimDistance"] # df_train["healthpack"] = df_train["boosts"] + df_train["heals"] df_train["skill"] = df_train["headshotKills"]+df_train["roadKills"] df_test["distance"] = df_test["rideDistance"]+df_test["walkDistance"]+df_test["swimDistance"] # df_test["healthpack"] = df_test["boosts"] + df_test["heals"] df_test["skill"] = df_test["headshotKills"]+df_test["roadKills"] df_train_size = df_train.groupby(['matchId','groupId']).size().reset_index(name='group_size') df_test_size = df_test.groupby(['matchId','groupId']).size().reset_index(name='group_size') df_train_mean = df_train.groupby(['matchId','groupId']).mean().reset_index() df_test_mean = df_test.groupby(['matchId','groupId']).mean().reset_index() df_train = pd.merge(df_train, df_train_mean, suffixes=["", "_mean"], how='left', on=['matchId', 'groupId']) df_test = pd.merge(df_test, df_test_mean, suffixes=["", "_mean"], how='left', on=['matchId', 'groupId']) del df_train_mean del df_test_mean df_train = pd.merge(df_train, df_train_size, how='left', on=['matchId', 'groupId']) df_test = pd.merge(df_test, df_test_size, how='left', on=['matchId', 'groupId']) del df_train_size del df_test_size target = 'winPlacePerc' train_columns = list(df_test.columns) """ remove some columns """ train_columns.remove("Id") train_columns.remove("matchId") train_columns.remove("groupId") train_columns_new = [] for name in train_columns: if '_' in name: train_columns_new.append(name) train_columns = train_columns_new # print(train_columns) X = df_train[train_columns] Y = df_test[train_columns] T = df_train[target] del df_train x_train, x_test, t_train, t_test = train_test_split(X, T, test_size = 0.2, random_state = 1234) # scaler = preprocessing.MinMaxScaler(feature_range=(-1, 1)).fit(x_train) scaler = preprocessing.QuantileTransformer().fit(x_train) x_train = scaler.transform(x_train) x_test = scaler.transform(x_test) Y = scaler.transform(Y) x_train=x_train.reshape((x_train.shape[0],x_train.shape[1],1)) x_test = x_test.reshape((x_test.shape[0], x_test.shape[1],1)) t_train=t_train.reshape((t_train.shape[0],1)) t_test = t_test.reshape((t_test.shape[0],1)) model = Sequential() model.add(Conv1D(8, kernel_size=3, strides=1, padding='same', input_shape=(x_train.shape[1],1))) model.add(BatchNormalization()) model.add(Conv1D(8, kernel_size=3, strides=1, padding='same')) model.add(Conv1D(16, kernel_size=3, strides=1, padding='valid')) model.add(BatchNormalization()) model.add(Conv1D(16, kernel_size=3, strides=1, padding='same')) model.add(Conv1D(32, kernel_size=3, strides=1, padding='valid')) model.add(BatchNormalization()) model.add(Conv1D(32, kernel_size=3, strides=1, padding='same')) model.add(Conv1D(32, kernel_size=3, strides=1, padding='same')) model.add(Conv1D(64, kernel_size=3, strides=1, padding='same')) model.add(Activation('tanh')) model.add(Flatten()) model.add(Dropout(0.5)) # model.add(Dropout(0.25)) model.add(Dense(512,kernel_initializer='he_normal', activation='relu', W_regularizer=l2(0.01))) model.add(Dense(128,kernel_initializer='he_normal', activation='relu', W_regularizer=l2(0.01))) model.add(Dense(1, kernel_initializer='normal', activation='sigmoid')) optimizers.Adam(lr=0.01, epsilon=1e-8, decay=1e-4) model.compile(optimizer=optimizer, loss='mse', metrics=['mae']) model.summary() ng = EarlyStopping(monitor='val_mean_absolute_error', mode='min', patience=4, verbose=1) # model_checkpoint = ModelCheckpoint(filepath='best_model.h5', monitor='val_mean_absolute_error', mode = 'min', save_best_only=True, verbose=1) # reduce_lr = ReduceLROnPlateau(monitor='val_mean_absolute_error', mode = 'min',factor=0.5, patience=3, min_lr=0.0001, verbose=1) history = model.fit(x_train, t_train, validation_data=(x_test, t_test), epochs=30, batch_size=32768, callbacks=[early_stopping], verbose=1)predict(Y) pred = pred.ravel()
补充知识:Keras Conv1d 参数及输入输出详解
Conv1d(in_channels,out_channels,kernel_size,stride=1,padding=0,dilation=1,groups=1,bias=True)
filters:卷积核的数目(即输出的维度)
kernel_size: 整数或由单个整数构成的list/tuple,卷积核的空域或时域窗长度
strides: 整数或由单个整数构成的list/tuple,为卷积的步长。任何不为1的strides均为任何不为1的dilation_rata均不兼容
padding: 补0策略,为”valid”,”same”或”casual”,”casual”将产生因果(膨胀的)卷积,即output[t]不依赖于input[t+1:]。当对不能违反事件顺序的时序信号建模时有用。“valid”代表只进行有效的卷积,即对边界数据不处理。“same”代表保留边界处的卷积结果,通常会导致输出shape与输入shape相同。
activation:激活函数,为预定义的激活函数名,或逐元素的Theano函数。如果不指定该函数,将不会使用任何激活函数(即使用线性激活函数:a(x)=x)
model.add(Conv1D(filters=nn_params["input_filters"], kernel_size=nn_params["filter_length"], strides=1, padding='valid', activation=nn_params["activation"], kernel_regularizer=l2(nn_params["reg"])))
例:输入维度为(None,1000,4)
第一维度:None
第二维度:
output_length = int((input_length - nn_params["filter_length"] + 1))
在此情况下为:
output_length = (1000 + 2*padding - filters +1)/ strides = (1000 + 2*0 -32 +1)/1 = 969
第三维度:filters
以上这篇解决keras使用cov1D函数的输入问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
keras,cov1D函数,输入
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]