笔者需要tensorflow仅运行在一个GPU上(机器本身有多GPU),而且需要依据系统参数动态调节,故无法简单使用CUDA_VISIBLE_DEVICES。
一种方式是全局使用tf.device函数生成的域,但设备号需要在绘制Graph前指定,仍然不够灵活。
查阅文档发现config的GPUOptions中的visible_device_list可以定义GPU编号从visible到virtual的映射,即可以设置tensorflow可见的GPU device,从而全局设置了tensorflow可见的GPU编号。代码如下:
config = tf.ConfigProto() config.gpu_options.visible_device_list = str(device_num) sess = tf.Session(config=config)
参考 多卡服务器下隐藏部分 GPU 和 TensorFlow 的显存使用设置,还可以通过os包设置全局变量CUDA_VISIBLE_DEVICES,代码如下:
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
补充知识:TensorFlow 设置程序可见GPU与逻辑分区
TensorFlow 设置程序可见GPU(多GPU情况)
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow_core.python.keras.api._v2 import keras
print(tf.__version__)
print(sys.version_info)
for module in mpl, np, pd, sklearn, tf, keras:
print(module.__name__, module.__version__)
# 打印变量所在位置
tf.debugging.set_log_device_placement(True)
# 获取物理GPU的个数
gpus = tf.config.experimental.list_physical_devices("GPU")
if len(gpus) >= 1:
# 设置第几个GPU 当前程序可见
tf.config.experimental.set_visible_devices(gpus[0], "GPU")
print("物理GPU个数:", len(gpus))
# 获取逻辑GPU的个数
logical_gpus = tf.config.experimental.list_logical_devices("GPU")
print("逻辑GPU个数:", len(logical_gpus))
TensorFlow 设置GPU的 逻辑分区
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow_core.python.keras.api._v2 import keras
print(tf.__version__)
print(sys.version_info)
for module in mpl, np, pd, sklearn, tf, keras:
print(module.__name__, module.__version__)
# 打印变量所在位置
tf.debugging.set_log_device_placement(True)
# 获取物理GPU的个数
gpus = tf.config.experimental.list_physical_devices("GPU")
if len(gpus) >= 1:
# 设置第几个GPU 当前程序可见
tf.config.experimental.set_visible_devices(gpus[0], "GPU")
# 设置GPU的 逻辑分区
tf.config.experimental.set_virtual_device_configuration(
gpus[0],
[tf.config.experimental.VirtualDeviceConfiguration(memory_limit=3072),
tf.config.experimental.VirtualDeviceConfiguration(memory_limit=3072)])
print("物理GPU个数:", len(gpus))
# 获取逻辑GPU的个数
logical_gpus = tf.config.experimental.list_logical_devices("GPU")
print("逻辑GPU个数:", len(logical_gpus))
TensorFlow 手动设置处理GPU
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow_core.python.keras.api._v2 import keras
print(tf.__version__)
print(sys.version_info)
for module in mpl, np, pd, sklearn, tf, keras:
print(module.__name__, module.__version__)
# 打印变量所在位置
tf.debugging.set_log_device_placement(True)
# 自动指定处理设备
tf.config.set_soft_device_placement(True)
# 获取物理GPU的个数
gpus = tf.config.experimental.list_physical_devices("GPU")
for gpu in gpus:
# 设置内存自增长方式
tf.config.experimental.set_memory_growth(gpu, True)
print("物理GPU个数:", len(gpus))
# 获取逻辑GPU的个数
logical_gpus = tf.config.experimental.list_logical_devices("GPU")
print("逻辑GPU个数:", len(logical_gpus))
c = []
# 循环遍历当前逻辑GPU
for gpu in logical_gpus:
print(gpu.name)
# 手动设置处理GPU
with tf.device(gpu.name):
a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
# 矩阵相乘 并且添加至列表
c.append(tf.matmul(a, b))
# 手动设置处理GPU
with tf.device("/GPU:0"):
matmul_sum = tf.add_n(c)
print(matmul_sum)
以上这篇Tensorflow全局设置可见GPU编号操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新动态
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]