我就废话不多说了,大家还是直接看代码吧~

# encoding=utf8
'''
查看和显示nii文件
'''
import matplotlib
matplotlib.use('TkAgg')
 
from matplotlib import pylab as plt
import nibabel as nib
from nibabel import nifti1
from nibabel.viewers import OrthoSlicer3D
 
example_filename = '../ADNI_nii/ADNI_002_S_0413_MR_MPR____N3__Scaled_2_Br_20081001114937668_S14782_I118675.nii'
 
img = nib.load(example_filename)
print (img)
print (img.header['db_name'])  #输出头信息
width,height,queue=img.dataobj.shape
OrthoSlicer3D(img.dataobj).show()
 
num = 1
for i in range(0,queue,10):
 
  img_arr = img.dataobj[:,:,i]
  plt.subplot(5,4,num)
  plt.imshow(img_arr,cmap='gray')
  num +=1
plt.show()
 

3D显示结果:

python 读取.nii格式图像实例

ADNI数据维度(256,256,170)分段显示:

python 读取.nii格式图像实例

补充知识:python nii图像扩充

我就废话不多说了,大家还是直接看代码吧~

import os
import nibabel as nib
import numpy as np
import math
 
src_us_folder = 'F:/src/ori'
src_seg_folder = 'G:/src/seg'
 
aug_us_folder = 'G:/aug/ori'
aug_seg_folder = 'G:/aug/seg'
 
img_n= 10
rotate_theta = np.array([0, math.pi/2])
 
# augmentation
aug_cnt = 0
for k in range(img_n):
  src_us_file = os.path.join(src_us_folder, (str(k) + '.nii'))
  src_seg_file = os.path.join(src_seg_folder, (str(k) + '_seg.nii'))
  # load .nii files
  src_us_vol = nib.load(src_us_file)
  src_seg_vol = nib.load(src_seg_file)
  # volume data
  us_vol_data = src_us_vol.get_data()
  us_vol_data = (np.array(us_vol_data)).astype('uint8')
  seg_vol_data = src_seg_vol.get_data()
  seg_vol_data = (np.array(seg_vol_data)).astype('uint8')
  # get refer affine matrix
  ref_affine = src_us_vol.affine
 
  ############### flip volume ###############
  flip_us_vol = np.fliplr(us_vol_data)
  flip_seg_vol = np.fliplr(seg_vol_data)
  # construct new volumes
  new_us_vol = nib.Nifti1Image(flip_us_vol, ref_affine)
  new_seg_vol = nib.Nifti1Image(flip_seg_vol, ref_affine)
  # save
  aug_us_file = os.path.join(aug_us_folder, (str(aug_cnt) + '.nii'))
  aug_seg_file = os.path.join(aug_seg_folder, (str(aug_cnt) + '_seg.nii'))
  nib.save(new_us_vol, aug_us_file)
  nib.save(new_seg_vol, aug_seg_file)
 
  aug_cnt = aug_cnt + 1
 
  ############### rotate volume ###############
  for t in range(len(rotate_theta)):
    print 'rotating %d theta of %d volume...' % (t, k)
    cos_gamma = np.cos(t)
    sin_gamma = np.sin(t)
    rot_affine = np.array([[1, 0, 0, 0],
                [0, cos_gamma, -sin_gamma, 0],
                [0, sin_gamma, cos_gamma, 0],
                [0, 0, 0, 1]])
    new_affine = rot_affine.dot(ref_affine)
    # construct new volumes
    new_us_vol = nib.Nifti1Image(us_vol_data, new_affine)
    new_seg_vol = nib.Nifti1Image(seg_vol_data, new_affine)
    # save
    aug_us_file = os.path.join(aug_us_folder, (str(aug_cnt) + '.nii'))
    aug_seg_file = os.path.join(aug_seg_folder, (str(aug_cnt) + '_seg.nii'))
    nib.save(new_us_vol, aug_us_file)
    nib.save(new_seg_vol, aug_seg_file)
 
    aug_cnt = aug_cnt + 1

以上这篇python 读取.nii格式图像实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
python,.nii格式,图像

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“python 读取.nii格式图像实例”
暂无“python 读取.nii格式图像实例”评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。