我就废话不多说了,大家还是直接看代码吧~

import tensorflow as tf
from sklearn.metrics import roc_auc_score

def auroc(y_true, y_pred):
 return tf.py_func(roc_auc_score, (y_true, y_pred), tf.double)
# Build Model...

model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy', auroc])

完整例子:

def auc(y_true, y_pred):
 auc = tf.metrics.auc(y_true, y_pred)[1]
 K.get_session().run(tf.local_variables_initializer())
 return auc

def create_model_nn(in_dim,layer_size=200):
 model = Sequential()
 model.add(Dense(layer_size,input_dim=in_dim, kernel_initializer='normal'))
 model.add(BatchNormalization())
 model.add(Activation('relu'))
 model.add(Dropout(0.3))
 for i in range(2):
  model.add(Dense(layer_size))
  model.add(BatchNormalization())
  model.add(Activation('relu'))
  model.add(Dropout(0.3))
 model.add(Dense(1, activation='sigmoid'))
 adam = optimizers.Adam(lr=0.01)
 model.compile(optimizer=adam,loss='binary_crossentropy',metrics = [auc]) 
 return model
####cv train
folds = StratifiedKFold(n_splits=5, shuffle=False, random_state=15)
oof = np.zeros(len(df_train))
predictions = np.zeros(len(df_test))
for fold_, (trn_idx, val_idx) in enumerate(folds.split(df_train.values, target2.values)):
 print("fold n°{}".format(fold_))
 X_train = df_train.iloc[trn_idx][features]
 y_train = target2.iloc[trn_idx]
 X_valid = df_train.iloc[val_idx][features]
 y_valid = target2.iloc[val_idx]
 model_nn = create_model_nn(X_train.shape[1])
 callback = EarlyStopping(monitor="val_auc", patience=50, verbose=0, mode='max')
 history = model_nn.fit(X_train, y_train, validation_data = (X_valid ,y_valid),epochs=1000,batch_size=64,verbose=0,callbacks=[callback])
 print('\n Validation Max score : {}'.format(np.max(history.history['val_auc'])))
 predictions += model_nn.predict(df_test[features]).ravel()/folds.n_splits

补充知识:Keras可使用的评价函数

1:binary_accuracy(对二分类问题,计算在所有预测值上的平均正确率)

binary_accuracy(y_true, y_pred)

2:categorical_accuracy(对多分类问题,计算在所有预测值上的平均正确率)

categorical_accuracy(y_true, y_pred)

3:sparse_categorical_accuracy(与categorical_accuracy相同,在对稀疏的目标值预测时有用 )

sparse_categorical_accuracy(y_true, y_pred)

4:top_k_categorical_accuracy(计算top-k正确率,当预测值的前k个值中存在目标类别即认为预测正确 )

top_k_categorical_accuracy(y_true, y_pred, k=5)

5:sparse_top_k_categorical_accuracy(与top_k_categorical_accracy作用相同,但适用于稀疏情况)

sparse_top_k_categorical_accuracy(y_true, y_pred, k=5)

以上这篇keras用auc做metrics以及早停实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
keras,auc,metrics,早停

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“keras用auc做metrics以及早停实例”
暂无“keras用auc做metrics以及早停实例”评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。