这篇文章记录一个采样器都随机地从原始的数据集中抽样数据。抽样数据采用permutation。 生成任意一个下标重排,从而利用下标来提取dataset中的数据的方法

需要的库

import torch

使用方法

这里以MNIST举例

train_dataset = dsets.MNIST(root='./data', #文件存放路径
              train=True,  #提取训练集
              transform=transforms.ToTensor(), #将图像转化为Tensor
              download=True)

sample_size = len(train_dataset)
sampler1 = torch.utils.data.sampler.SubsetRandomSampler(
  np.random.choice(range(len(train_dataset)), sample_size))

代码详解

np.random.choice()

#numpy.random.choice(a, size=None, replace=True, p=None)
#从a(只要是ndarray都可以,但必须是一维的)中随机抽取数字,并组成指定大小(size)的数组
#replace:True表示可以取相同数字,False表示不可以取相同数字
#数组p:与数组a相对应,表示取数组a中每个元素的概率,默认为选取每个元素的概率相同。

那么这里就相当于抽取了一个全排列

torch.utils.data.sampler.SubsetRandomSampler

# 会根据后面给的列表从数据集中按照下标取元素
# class torch.utils.data.SubsetRandomSampler(indices):无放回地按照给定的索引列表采样样本元素。

所以就可以了。

补充知识:Pytorch学习之torch----随机抽样、序列化、并行化

1. torch.manual_seed(seed)

说明:设置生成随机数的种子,返回一个torch._C.Generator对象。使用随机数种子之后,生成的随机数是相同的。

参数:

seed(int or long) -- 种子

> import torch
> torch.manual_seed(1)
<torch._C.Generator object at 0x0000019684586350>
> a = torch.rand(2, 3)
> a
tensor([[0.7576, 0.2793, 0.4031],
    [0.7347, 0.0293, 0.7999]])
> torch.manual_seed(1)
<torch._C.Generator object at 0x0000019684586350>
> b = torch.rand(2, 3)
> b
tensor([[0.7576, 0.2793, 0.4031],
    [0.7347, 0.0293, 0.7999]])
> a == b
tensor([[1, 1, 1],
    [1, 1, 1]], dtype=torch.uint8)

2. torch.initial_seed()

说明:返回生成随机数的原始种子值

> torch.manual_seed(4)
<torch._C.Generator object at 0x0000019684586350>
> torch.initial_seed()
4

3. torch.get_rng_state()

说明:返回随机生成器状态(ByteTensor)

> torch.initial_seed()
4
> torch.get_rng_state()
tensor([4, 0, 0, ..., 0, 0, 0], dtype=torch.uint8)

4. torch.set_rng_state()

说明:设定随机生成器状态

参数:

new_state(ByteTensor) -- 期望的状态

5. torch.default_generator

说明:默认的随机生成器。等于<torch._C.Generator object>

6. torch.bernoulli(input, out=None)

说明:从伯努利分布中抽取二元随机数(0或1)。输入张量包含用于抽取二元值的概率。因此,输入中的所有值都必须在[0,1]区间内。输出张量的第i个元素值,将会以输入张量的第i个概率值等于1。返回值将会是与输入相同大小的张量,每个值为0或者1.

参数:

input(Tensor) -- 输入为伯努利分布的概率值

out(Tensor,可选) -- 输出张量

> a = torch.Tensor(3, 3).uniform_(0, 1)
> a
tensor([[0.5596, 0.5591, 0.0915],
    [0.2100, 0.0072, 0.0390],
    [0.9929, 0.9131, 0.6186]])
> torch.bernoulli(a)
tensor([[0., 1., 0.],
    [0., 0., 0.],
    [1., 1., 1.]])

7. torch.multinomial(input, num_samples, replacement=False, out=None)

说明:返回一个张量,每行包含从input相应行中定义的多项分布中抽取的num_samples个样本。要求输入input每行的值不需要总和为1,但是必须非负且总和不能为0。当抽取样本时,依次从左到右排列(第一个样本对应第一列)。如果输入input是一个向量,输出out也是一个相同长度num_samples的向量。如果输入input是m行的矩阵,输出out是形如m x n的矩阵。并且如果参数replacement为True,则样本抽取可以重复。否则,一个样本在每行不能被重复。

参数:

input(Tensor) -- 包含概率的张量

num_samples(int) -- 抽取的样本数

replacement(bool) -- 布尔值,决定是否能重复抽取

out(Tensor) -- 结果张量

> weights = torch.Tensor([0, 10, 3, 0])
> weights
tensor([ 0., 10., 3., 0.])
> torch.multinomial(weights, 4, replacement=True)
tensor([1, 1, 1, 1])

8. torch.normal(means, std, out=None)

说明:返回一个张量,包含从给定参数means,std的离散正态分布中抽取随机数。均值means是一个张量,包含每个输出元素相关的正态分布的均值。std是一个张量。包含每个输出元素相关的正态分布的标准差。均值和标准差的形状不须匹配,但每个张量的元素个数必须想听。

参数:

means(Tensor) -- 均值

std(Tensor) -- 标准差

out(Tensor) -- 输出张量

> n_data = torch.ones(5, 2)
> n_data
tensor([[1., 1.],
    [1., 1.],
    [1., 1.],
    [1., 1.],
    [1., 1.]])
> x0 = torch.normal(2 * n_data, 1)
> x0
tensor([[1.6544, 0.9805],
    [2.1114, 2.7113],
    [1.0646, 1.9675],
    [2.7652, 3.2138],
    [1.1204, 2.0293]])

9. torch.save(obj, f, pickle_module=<module 'pickle' from '/home/lzjs/...)

说明:保存一个对象到一个硬盘文件上。

参数:

obj -- 保存对象

f -- 类文件对象或一个保存文件名的字符串

pickle_module -- 用于pickling源数据和对象的模块

pickle_protocol -- 指定pickle protocal可以覆盖默认参数

10. torch.load(f, map_location=None, pickle_module=<module 'pickle' from '/home/lzjs/...)

说明:从磁盘文件中读取一个通过torch.save()保存的对象。torch.load()可通过参数map_location动态地进行内存重映射,使其能从不动设备中读取文件。一般调用时,需两个参数:storage和location tag。返回不同地址中的storage,或者返回None。如果这个参数是字典的话,意味着从文件的地址标记到当前系统的地址标记的映射。

参数:

f -- l类文件对象或一个保存文件名的字符串

map_location -- 一个函数或字典规定如何remap存储位置

pickle_module -- 用于unpickling元数据和对象的模块

torch.load('tensors.pt')
# 加载所有的张量到CPU
torch.load('tensor.pt', map_location=lambda storage, loc:storage)
# 加载张量到GPU
torch.load('tensors.pt', map_location={'cuda:1':'cuda:0'})

11. torch.get_num_threads()

说明:获得用于并行化CPU操作的OpenMP线程数

12. torch.set_num_threads()

说明:设定用于并行化CPU操作的OpenMP线程数

以上这篇pytorch随机采样操作SubsetRandomSampler()就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
pytorch,随机采样,SubsetRandomSampler

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“pytorch随机采样操作SubsetRandomSampler()”
暂无“pytorch随机采样操作SubsetRandomSampler()”评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。