问题

你想在一个消息传输层如 sockets 、multiprocessing connections 或 ZeroMQ 的基础之上实现一个简单的远程过程调用(RPC)。

解决方案

将函数请求、参数和返回值使用pickle编码后,在不同的解释器直接传送pickle字节字符串,可以很容易的实现RPC。 下面是一个简单的PRC处理器,可以被整合到一个服务器中去:

# rpcserver.py

import pickle
class RPCHandler:
  def __init__(self):
    self._functions = { }

  def register_function(self, func):
    self._functions[func.__name__] = func

  def handle_connection(self, connection):
    try:
      while True:
        # Receive a message
        func_name, args, kwargs = pickle.loads(connection.recv())
        # Run the RPC and send a response
        try:
          r = self._functions[func_name](*args,**kwargs)
          connection.send(pickle.dumps(r))
        except Exception as e:
          connection.send(pickle.dumps(e))
    except EOFError:
       pass

要使用这个处理器,你需要将它加入到一个消息服务器中。你有很多种选择, 但是使用 multiprocessing 库是最简单的。下面是一个RPC服务器例子:

from multiprocessing.connection import Listener
from threading import Thread

def rpc_server(handler, address, authkey):
  sock = Listener(address, authkey=authkey)
  while True:
    client = sock.accept()
    t = Thread(target=handler.handle_connection, args=(client,))
    t.daemon = True
    t.start()

# Some remote functions
def add(x, y):
  return x + y

def sub(x, y):
  return x - y

# Register with a handler
handler = RPCHandler()
handler.register_function(add)
handler.register_function(sub)

# Run the server
rpc_server(handler, ('localhost', 17000), authkey=b'peekaboo')

为了从一个远程客户端访问服务器,你需要创建一个对应的用来传送请求的RPC代理类。例如

import pickle

class RPCProxy:
  def __init__(self, connection):
    self._connection = connection
  def __getattr__(self, name):
    def do_rpc(*args, **kwargs):
      self._connection.send(pickle.dumps((name, args, kwargs)))
      result = pickle.loads(self._connection.recv())
      if isinstance(result, Exception):
        raise result
      return result
    return do_rpc

要使用这个代理类,你需要将其包装到一个服务器的连接上面,例如:

> from multiprocessing.connection import Client
> c = Client(('localhost', 17000), authkey=b'peekaboo')
> proxy = RPCProxy(c)
> proxy.add(2, 3)

5
> proxy.sub(2, 3)
-1
> proxy.sub([1, 2], 4)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "rpcserver.py", line 37, in do_rpc
  raise result
TypeError: unsupported operand type(s) for -: 'list' and 'int'
>

要注意的是很多消息层(比如 multiprocessing )已经使用pickle序列化了数据。 如果是这样的话,对 pickle.dumps() 和 pickle.loads() 的调用要去掉。

讨论

RPCHandler 和 RPCProxy 的基本思路是很比较简单的。 如果一个客户端想要调用一个远程函数,比如 foo(1, 2, z=3) ,代理类创建一个包含了函数名和参数的元组 ('foo', (1, 2), {'z': 3}) 。 这个元组被pickle序列化后通过网络连接发生出去。 这一步在 RPCProxy 的 __getattr__() 方法返回的 do_rpc() 闭包中完成。 服务器接收后通过pickle反序列化消息,查找函数名看看是否已经注册过,然后执行相应的函数。 执行结果(或异常)被pickle序列化后返回发送给客户端。我们的实例需要依赖 multiprocessing 进行通信。 不过,这种方式可以适用于其他任何消息系统。例如,如果你想在ZeroMQ之上实习RPC, 仅仅只需要将连接对象换成合适的ZeroMQ的socket对象即可。

由于底层需要依赖pickle,那么安全问题就需要考虑了 (因为一个聪明的黑客可以创建特定的消息,能够让任意函数通过pickle反序列化后被执行)。 因此你永远不要允许来自不信任或未认证的客户端的RPC。特别是你绝对不要允许来自Internet的任意机器的访问, 这种只能在内部被使用,位于防火墙后面并且不要对外暴露。

作为pickle的替代,你也许可以考虑使用JSON、XML或一些其他的编码格式来序列化消息。 例如,本机实例可以很容易的改写成JSON编码方案。还需要将 pickle.loads() 和 pickle.dumps() 替换成 json.loads() 和 json.dumps() 即可:

# jsonrpcserver.py
import json

class RPCHandler:
  def __init__(self):
    self._functions = { }

  def register_function(self, func):
    self._functions[func.__name__] = func

  def handle_connection(self, connection):
    try:
      while True:
        # Receive a message
        func_name, args, kwargs = json.loads(connection.recv())
        # Run the RPC and send a response
        try:
          r = self._functions[func_name](*args,**kwargs)
          connection.send(json.dumps(r))
        except Exception as e:
          connection.send(json.dumps(str(e)))
    except EOFError:
       pass

# jsonrpcclient.py
import json

class RPCProxy:
  def __init__(self, connection):
    self._connection = connection
  def __getattr__(self, name):
    def do_rpc(*args, **kwargs):
      self._connection.send(json.dumps((name, args, kwargs)))
      result = json.loads(self._connection.recv())
      return result
    return do_rpc

实现RPC的一个比较复杂的问题是如何去处理异常。至少,当方法产生异常时服务器不应该奔溃。 因此,返回给客户端的异常所代表的含义就要好好设计了。 如果你使用pickle,异常对象实例在客户端能被反序列化并抛出。如果你使用其他的协议,那得想想另外的方法了。 不过至少,你应该在响应中返回异常字符串。我们在JSON的例子中就是使用的这种方式。

以上就是Python如何实现远程方法调用的详细内容,更多关于Python远程方法调用的资料请关注其它相关文章!

标签:
Python,方法调用,Python,远程方法调用

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“Python如何实现远程方法调用”
暂无“Python如何实现远程方法调用”评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。