这次主要是爬了京东上一双鞋的相关评论:将数据保存到excel中并可视化展示相应的信息
主要的python代码如下:
文件1
#将excel中的数据进行读取分析 import openpyxl import matplotlib.pyplot as pit #数据统计用的 wk=openpyxl.load_workbook('销售数据.xlsx') sheet=wk.active #获取活动表 #获取最大行数和最大列数 rows=sheet.max_row cols=sheet.max_column lst=[] #用于存储鞋子码数 for i in range (2,rows+1): size=sheet.cell(i,3).value lst.append(size) #以上已经将excel中的数据读取完毕 #一下操作就你行统计不同码数的数量 '''python中有一个数据结构叫做字典,使用鞋码做key,使用销售数量做value''' dic_size={} for item in lst: dic_size[item]=0 for item in lst: for size in dic_size: #遍历字典 if item==size: dic_size[size]+=1 break for item in dic_size: print(item,dic_size[item]) #弄成百分比的形式 lst_total=[] for item in dic_size: lst_total.append([item,dic_size[item],dic_size[item]/160*1.0]) #接下来进行数据的可视化(进行画饼操作) labels=[item[0] +'码'for item in lst_total] #使用列表生成式,得到饼图的标签 fraces=[item[2] for item in lst_total] #饼图中的数据源 pit.rcParams['font.family']=['SimHei'] #单独的表格乱码的处理方式 pit.pie(x=fraces,labels=labels,autopct='%1.1f%%') #pit.show()进行结果的图片的展示 pit.savefig('图.jpg')
文件2
#所涉及到的是requests和openpyxl数据的存储和数据的清洗以及统计然后就是matplotlib进行数据的可视化 #静态数据点击element中点击发现在html中,服务器已经渲染好的内容,直接发给浏览器,浏览器解释执行, #动态数据:如果点击下一页。我们的地址栏(加后缀但是前面的地址栏没变也算)(也可以点击2和3页)没有发生任何变化说明是动态数据,说明我们的数据是后来被渲染到html中的。他的数据根本不在html中的。 #动态查看network然后用的url是network里面的headers #安装第三方模块输入cmd之后pip install 加名字例如requests import requests import re import time import json import openpyxl #用于操作 excel文件的 headers = {'user-agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.131 Safari/537.36'}#创建头部信息 def get_comments(productId,page): url = "https://club.jd.com/comment/productPageComments.action".format(productId,page) resp = requests.get(url, headers=headers) s=resp.text.replace('fetchJSON_comment98(','')#进行替换操作。获取到所需要的相应的json,也就是去掉前后没用的东西 s=s.replace(');','') json_data=json.loads(s)#进行数据json转换 return json_data #获取最大页数 def get_max_page(productId): dis_data=get_comments(productId,0)#调用刚才写的函数进行向服务器的访问请求,获取字典数据 return dis_data['maxPage']#获取他的最大页数。每一页都有最大页数 #进行数据提取 def get_info(productId): max_page=get_max_page(productId) lst=[]#用于存储提取到的商品数据 for page in range(1,max_page+1): #获取没页的商品评论 comments=get_comments(productId,page) comm_list=comments['comments']#根据comnents获取到评论的列表(每页有10条评论) #遍历评论列表,获取其中的相应的数据 for item in comm_list: #每条评论分别是一字典。在继续通过key来获取值 content=item['content'] color=item['productColor'] size=item['productSize'] lst.append([content,color,size])#将每条评论添加到列表当中 time.sleep(3)#防止被京东封ip进行一个时间延迟。防止访问次数太频繁 save(lst) def save(lst): #把爬取到的数据进行存储,保存到excel中 wk=openpyxl.Workbook()#用于创建工作簿对象 sheet=wk.active #获取活动表(一个工作簿有三个表) #遍历列表将数据添加到excel中。列表中的一条数据在表中是一行 biaotou='评论','颜色','大小' sheet.append(biaotou) for item in lst: sheet.append(item) #将excel保存到磁盘上 wk.save('销售数据.xlsx') if __name__=='__main__': productId='66749071789' get_info(productId) print("ok")
实现的效果如下:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
标签:
Python,爬取数据,可视化
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“Python爬取数据并实现可视化代码解析”评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新动态
2024年11月24日
2024年11月24日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]