Python爬取网页信息的步骤
以爬取英文名字网站(https://nameberry.com/)中每个名字的评论内容,包括英文名,用户名,评论的时间和评论的内容为例。
1、确认网址
在浏览器中输入初始网址,逐层查找链接,直到找到需要获取的内容。
在打开的界面中,点击鼠标右键,在弹出的对话框中,选择“检查”,则在界面会显示该网页的源代码,在具体内容处点击查找,可以定位到需要查找的内容的源码。
注意:代码显示的方式与浏览器有关,有些浏览器不支持显示源代码功能(360浏览器,谷歌浏览器,火狐浏览器等是支持显示源代码功能)
步骤图:
1)首页,获取A~Z的页面链接
2)名字链接页,获取每个字母中的名字链接(存在翻页情况)
3)名字内容页,获取每个名字的评论信息
2、编写测试代码
1)获取A~Z链接,在爬取网页信息时,为了减少网页的响应时间,可以根据已知的信息,自动生成对应的链接,这里采取自动生成A~Z之间的连接,以pandas的二维数组形式存储
def get_url1(): urls=[] # A,'B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z' a=['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'] #自动生成A~Z的链接 for i in a: urls.append("https://nameberry.com/search/baby_names_starting_with/%s" %i) dp=pd.DataFrame(urls) dp.to_csv("A~Z_Link1.csv",mode="a",encoding='utf_8_sig') #循环用于在每个字母链接下,调用爬取名字链接的页面的函数,即函数嵌套 for j in urls: get_pages_Html(j) return urls
2)获取名字链接,根据网页源码分析出包含名字链接的标签,编写代码,名字链接用直接存储的方式存储,方便读取名字链接进行对名字的评论内容的获取
#获取页数 def get_pages_Html(url1): req = requests.get(url1) soup=BeautifulSoup(req.text) #异常处理,为解决页面不存在多页的问题,使用re正则表达式获取页面数 try: lastpage = soup.find(class_="last").find("a")['href'] str1='{}'.format(lastpage) b=re.findall('\\d+', str1 ) for page in b: num=page except: num=1 get_pages(num,url1) return num def get_pages(n,url): pages=[] for k in range(1,int(n)+1): pages.append("{}".format(url,k)) dp=pd.DataFrame(pages) dp.to_csv("NUM_pages_1.csv",mode="a",encoding='utf_8_sig') #函数调用 for l in pages: parse_HTML2(l) return pages # 名字的链接,根据网页源码的标签,确定名字链接的位置 def parse_HTML2(url2): try: req = requests.get(url2) req.encoding = req.apparent_encoding soup = BeautifulSoup(req.text) except: dp=pd.DataFrame(url2) dp.to_csv("Error_pages_1.csv",mode="a",encoding='utf_8_sig') name_data_l=[] error=[] li_list = soup.find_all('li',class_="Listing-name pt-15 pb-15 bdb-gray-light w-100pct flex border-highlight") try: for li in li_list: nameList=li.find('a',class_='flex-1')['href'] name_data_l.append('https://nameberry.com/'+nameList) time.sleep(1) cun(name_data_l,'Name_List_1') except: dp=pd.DataFrame(name_data_l) dp.to_csv("Error_Name_List_1.csv",mode="a",encoding='utf_8_sig') # cun(url2,'Error_link_Q') # dp=pd.DataFrame(name_data_l) # dp.to_csv("Name_List.csv",mode="a",encoding='utf_8_sig') # for i in name_data_l: # parse_HTML3(i) return name_data_l
3)获取名字评论的内容,采用字典形式写入文件
# 名字里的内容 def parse_HTML3(url3): count=0 req = requests.get(url3) req.encoding = req.apparent_encoding soup = BeautifulSoup(req.text) error=[] try: Name=soup.find('h1',class_='first-header').find("a").get_text().replace(",","").replace("\n","") except: error.append(url3) cun(error,"Error_Link_Comment") li_list = soup.find_all('div',class_="comment") for li in li_list: Title=li.find("h4").get_text().replace(",","").replace("\n","") Time=li.find("p",class_='meta').get_text().replace(",","").replace("\n","") Comments=li.find("div",class_='comment-text').get_text().replace(",","").replace("\n","") dic2={ "Name":Name, "Title":Title, "Time":Time, "Comments":Comments } time.sleep(1) count=count+1 save_to_csv(dic2,"Name_data_comment") print(count) return 1
3、测试代码
1)代码编写完成后,具体的函数调用逻辑,获取链接时,为直接的函数嵌套,获取内容时,为从文件中读取出名字链接,在获取名字的评论内容。避免因为逐层访问,造成访问网页超时,出现异常。
如图:
2)测试结果
4、小结
在爬取网页内容时,要先分析网页源码,再进行编码和调试,遵从爬虫协议(严重者会被封号),在爬取的数据量非常大时,可以设置顺序部分请求(一部分的进行爬取网页内容)。
总之,爬虫有风险,测试需谨慎!!!
以上就是Python爬取网页信息的示例的详细内容,更多关于Python爬取网页信息的资料请关注其它相关文章!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]