1 matplot入门指南
matplotlib是Python科学计算中使用最多的一个可视化库,功能丰富,提供了非常多的可视化方案,基本能够满足各种场景下的数据可视化需求。但功能丰富从另一方面来说也意味着概念、方法、参数繁多,让许多新手望而却步。
据我了解,大部分人在对matplotlib接触不深时都是边画图边百度,诸如这类的问题,我想大家都似曾相识:Python如何画散点图,matplotlib怎么将坐标轴标签旋转45度,怎么设置图例字体大小等等。无论针对哪一个问题,往往都有多种解决方法,搜索引擎这时候当然会很热情得将各种五花八门、看似合理、各不相同的解决方案推给我们,对于新手往往就迷失在这些纷杂的答案中,然后觉得matplotlib好复杂。matplotlib设计原则就是追求对每一个图表细节的完全控制,所以matplotlib源码中各种对象很多,甚至各对象间相互应用,错综复杂,对同一个对象的设置经常可以调用不同的方法来实现,这是matplotlib入门难的原因之一。
对于matplotlib入门阶段学习曲线陡峭,我认为还有一个更加重要的原因。无论是在各种出版书籍还是网络博客中,都少有资料对matplotlib进行深入的系统介绍,大多浅尝辄止。这些流于表层的资料对于如何用matplotlib作图没有进行深入的分析,大多只介绍如何调用pyplot模块中的方法进行作图。pyplot是matplotlib中提供的一个顶层模块,提供许多方法实现了快速、简便作图,几行代码就可以完成一幅图的创作,但是,这种方法作图却让新手对matplotlib图形的认识变得粗浅,也很难实现对图形的更加精细控制,底层定制能力有限,最终让新手对matplotlib咬牙切齿。这种方法就想吃快餐,快速方便,但是吃多了难免营养不良。
面对matplotlib入门阶段的这两个问题,怎么办呢?
matplotlib其实提供了两类接口实现作图。第一类基于状态的接口,就是上文中提到的pyplot进行作图,这类接口对matplotlib中更加底层的对象进行封装,以仿MATLAB作图风格的方式让作图更加简单方便。至于为什么叫基于状态,我的观点是pyplot所有作图动作都是默认在当前出于激活的元素上进行,要切换到其他元素作图,就要使另一元素激活。第二类接口是基于对象的接口,这种方法是使用买你想对象的方法来作图,认为图形中每一个元素都是一种对象,通过调用更加底层对象来实现作图。这种方法代码量更多,但是让用户对matplotlib图形的构成有了更深的认识,也让用户对图形的每一个元素有更强的掌控力。
所以,在使用matplotlib作图过程中,本文建议在学习阶段多使用基于对象的方法进行作图,只要掌握了基于对象的方法作图,后面使用pyplot作图自然水到渠成。本文后续大部分介绍也是基于这一种方法。
2 安装与导入
- 安装
matplotlib的安装与Python中其他第三方库安装方法无异
pip install -i https://pypi.douban.com/simple matplotlib
- 导入
进行导入操作时通常不会直接将整个matplotlib包导入,而是导入matplotlib包中最为常用的pyplot模块,一般的,我们习惯将pyplot导入时起一个简称plt。
import matplotlib.pyplot as plt
3 图的构成
在使用matplotlib进行绘图之前,理解matplotlib图表构成是非常有必要的。matplotlib图表有三个非常重要的概念:figure、axes、axies。 三者之间的关系构成了matplotlib图表的整体布局,如下图所示。
在matplotlib图表中,至少有一个figure,figure可以理解为一张画布,画布上面可以画多个axes,这里的axes我理解为坐标系,每个坐标系可以有多个axis,也就是有多条坐标轴。
下图是在matplotlib官方文档中展示的一张图片,进一步的很清晰展示了matplotlib图表布局上的组件构成:
上图中,蓝色部分文本是各组件的名称,请牢记各组件的名称,方便在对各组件进行设置是调用函数,因为组件的名称与函数名是相似的。其实,在matplotlib中,在figure中的所有组件,包括图一中的axes、axies甚至是figure和图中出现的所有组件都称为artist,因为这些组件均继承于一个名为Artist的父类。根据所在位置和作用,我们可以将matplotlib所有artist可以划分到三个层次:
(1)figure层:画布,这是最低层的容器,用于容纳axes。
(2)axes层:坐标系,也成为轴域,第二层容器,用于容纳axis。
(3)axis层:坐标轴,也包含坐标轴上更加细微的组件。
使用matplotlib进行作图时,按照这个层次结构顺序进行创建完成作图。接下来,我们分别对figure、axes、axis进行展开介绍。
3 总结
本篇博客主要是为matplotlib如何入门以及matplotlib宏观层面的容器布局做了一番介绍,希望这番介绍能够让各位读者对matplotlib有一个更加正确、深入的认识。
最后,还是想说一句,matplotlib很强,只不过目前无论是网络上还是市场上的matplotlib资料大多属于快餐类别,吃多了就容易营养不良,造成后继无力。当然,pyplot只是快餐,却不是毒药,因为pyplot中确实提供了很多强大的方法实习县对图形的管理。本文强烈建议(官方文档中也提出了),如果只是简单得对数据进行展示,那么当然可以使用pyplot完成,但是如果需要更加精细的对图片进行设置,那么建议使用pyplot中的方法来创建matplotlib图形的容器对象,因为pyplot创建容器对象可以方便得纳入matplotlib序列中进行管理,有了容器对象之后,后续的画图,请勿通过再pyplot进行,最好是通过容器对象进行操作。
入门学习阶段,无论如何,请走基于对象作图这条路!!!
在下一篇博客中,我将对这三层容器对象开始,循序渐进地介绍基于对象的作图方式。
作者:奥辰
微信号:chb1137796095
Github:https://github.com/ChenHuabin321
欢迎加V交流,共同学习,共同进步!
以上就是python Matplotlib数据可视化(1):简单入门的详细内容,更多关于python Matplotlib数据可视化的资料请关注其它相关文章!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]