EM算法实例
通过实例可以快速了解EM算法的基本思想,具体推导请点文末链接。图a是让我们预热的,图b是EM算法的实例。
这是一个抛硬币的例子,H表示正面向上,T表示反面向上,参数θ表示正面朝上的概率。硬币有两个,A和B,硬币是有偏的。本次实验总共做了5组,每组随机选一个硬币,连续抛10次。如果知道每次抛的是哪个硬币,那么计算参数θ就非常简单了,如
下图所示:
如果不知道每次抛的是哪个硬币呢?那么,我们就需要用EM算法,基本步骤为:
计算过程详解:初始值θ_A^{(0)}θA(0)"color: #ff0000">Python实现
#coding=utf-8
from numpy import *
from scipy import stats
import time
start = time.perf_counter()
def em_single(priors,observations):
"""
EM算法的单次迭代
Arguments
------------
priors:[theta_A,theta_B]
observation:[m X n matrix]
Returns
---------------
new_priors:[new_theta_A,new_theta_B]
:param priors:
:param observations:
:return:
"""
counts = {'A': {'H': 0, 'T': 0}, 'B': {'H': 0, 'T': 0}}
theta_A = priors[0]
theta_B = priors[1]
#E step
for observation in observations:
len_observation = len(observation)
num_heads = observation.sum()
num_tails = len_observation-num_heads
#二项分布求解公式
contribution_A = stats.binom.pmf(num_heads,len_observation,theta_A)
contribution_B = stats.binom.pmf(num_heads,len_observation,theta_B)
weight_A = contribution_A / (contribution_A + contribution_B)
weight_B = contribution_B / (contribution_A + contribution_B)
#更新在当前参数下A,B硬币产生的正反面次数
counts['A']['H'] += weight_A * num_heads
counts['A']['T'] += weight_A * num_tails
counts['B']['H'] += weight_B * num_heads
counts['B']['T'] += weight_B * num_tails
# M step
new_theta_A = counts['A']['H'] / (counts['A']['H'] + counts['A']['T'])
new_theta_B = counts['B']['H'] / (counts['B']['H'] + counts['B']['T'])
return [new_theta_A,new_theta_B]
def em(observations,prior,tol = 1e-6,iterations=10000):
"""
EM算法
:param observations :观测数据
:param prior:模型初值
:param tol:迭代结束阈值
:param iterations:最大迭代次数
:return:局部最优的模型参数
"""
iteration = 0;
while iteration < iterations:
new_prior = em_single(prior,observations)
delta_change = abs(prior[0]-new_prior[0])
if delta_change < tol:
break
else:
prior = new_prior
iteration +=1
return [new_prior,iteration]
#硬币投掷结果
observations = array([[1,0,0,0,1,1,0,1,0,1],
[1,1,1,1,0,1,1,1,0,1],
[1,0,1,1,1,1,1,0,1,1],
[1,0,1,0,0,0,1,1,0,0],
[0,1,1,1,0,1,1,1,0,1]])
print (em(observations,[0.6,0.5]))
end = time.perf_counter()
print('Running time: %f seconds'%(end-start))
总结
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“Python实现EM算法实例代码”评论...
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新动态
2025年11月06日
2025年11月06日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]

