Haar特征
哈尔特征使用检测窗口中指定位置的相邻矩形,计算每一个矩形的像素和并取其差值。然后用这些差值来对图像的子区域进行分类。
haar特征模板有以下几种:
以第一个haar特征模板为例
计算方式
1.特征 = 白色 - 黑色(用白色区域的像素之和减去黑色区域的象征之和)
2.特征 = 整个区域 * 权重 + 黑色 * 权重
使用haar模板处理图像
从图像的起点开始,利用haar模板从左往右遍历,从上往下遍历,并设置步长,同时考虑图像大小和模板大小的信息
假如我们现在有一个 1080 * 720
大小的图像,10*10
的haar模板,并且步长为2,那么我我们所需要的的计算量为: (1080 / 2 * 720 / 2) * 100 * 模板数量 * 缩放 约等于50-100亿,计算量太大。
积分图
使用积分图可大量减少运算时间,实际上就是运用了前缀和的原理
Adaboost分类器
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。
算法流程
该算法其实是一个简单的弱分类算法提升过程,这个过程通过不断的训练,可以提高对数据的分类能力。整个过程如下所示:
1. 先通过对N个训练样本的学习得到第一个弱分类器;
2. 将分错的样本和其他的新数据一起构成一个新的N个的训练样本,通过对这个样本的学习得到第二个弱分类器 ;
3. 将1和2都分错了的样本加上其他的新样本构成另一个新的N个的训练样本,通过对这个样本的学习得到第三个弱分类器;
4. 最终经过提升的强分类器。即某个数据被分为哪一类要由各分类器权值决定。
我们需要从官网下载俩个Adaboost分类器文件,分别是人脸和眼睛的分类器:
下载地址:https://github.com/opencv/opencv/tree/master/data/haarcascades
代码实现
实现人脸识别的基本步骤:
1.加载文件和图片
2.进行灰度处理
3.得到haar特征
4.检测人脸
5.进行标记
我们使用cv2.CascadeClassifier()
来加载我们下载好的分类器。
然后我们使用detectMultiScale()
方法来得到识别结果
import cv2 import numpy as np import matplotlib.pyplot as plt # 1.加载文件和图片 2.进行灰度处理 3.得到haar特征 4.检测人脸 5.标记 face_xml = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') eye_xml = cv2.CascadeClassifier('haarcascade_eye.xml') img = cv2.imread('img.png') cv2.imshow('img', img) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 1.灰色图像 2.缩放系数 3.目标大小 faces = face_xml.detectMultiScale(gray, 1.3, 5) print('face = ',len(faces)) print(faces) #绘制人脸,为人脸画方框 for (x,y,w,h) in faces: cv2.rectangle(img, (x,y), (x + w, y + h), (255,0,0), 2) roi_face = gray[y:y+h,x:x+w] roi_color = img[y:y+h,x:x+w] eyes = eye_xml.detectMultiScale(roi_face) print('eyes = ',len(eyes)) for (ex,ey,ew,eh) in eyes: cv2.rectangle(roi_color, (ex,ey),(ex + ew, ey + eh), (0,255,0), 2) cv2.imshow('dat', img) cv2.waitKey(0)
face = 1 [[133 82 94 94]] eyes = 2
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新动态
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]