前言

这周和大家分享如何用python识别图像里的条码。用到的库可以是zbar。希望西瓜6辛苦码的代码不要被盗了。(zxing的话,我一直没有装好,等装好之后再写一篇)

具体步骤

 前期准备

用opencv去读取图片,用pip进行安装。

pip install opencv-python

所用到的图片就是这个

详解利用python识别图片中的条码(pyzbar)及条码图片矫正和增强

使用pyzbar

windows的安装方法是

pip install pyzbar

而mac的话,最好用brew来安装。
(有可能直接就好,也有可能很麻烦)
装好之后就是读取图片,识别条码。
代码如下

import cv2
import pyzbar.pyzbar as pyzbar

image=cv2.imread("/Users/phoenix/Downloads/barcode.png")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
texts = pyzbar.decode(gray)
for text in texts:
 tt = text.data.decode("utf-8")
print(tt)

结果如图:

详解利用python识别图片中的条码(pyzbar)及条码图片矫正和增强

特殊情况处理(条码图片矫正和增强)

只以pyzbar举例

条码是颠倒的是否会影响识别?

不影响,单纯颠倒180度和90度是不会影响识别的。
我们把上一个图的颠倒180度,用颠倒后的图试一下

详解利用python识别图片中的条码(pyzbar)及条码图片矫正和增强

import cv2
import pyzbar.pyzbar as pyzbar
import numpy as np

image=cv2.imread("/Users/phoenix/Downloads/barcode_180.png")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
texts = pyzbar.decode(gray)
print(texts)
if texts==[]:
 print("未识别成功")
else:
 for text in texts:
  tt = text.data.decode("utf-8")
 print("识别成功")
 print(tt)

结果如图

详解利用python识别图片中的条码(pyzbar)及条码图片矫正和增强

90度的话也是同样可以成功的。但是其它角度就会GG。

条码是倾斜的是否会影响识别?

会的,但这种还比较好处理。
如图

详解利用python识别图片中的条码(pyzbar)及条码图片矫正和增强

这张图用上面的代码就会

详解利用python识别图片中的条码(pyzbar)及条码图片矫正和增强

解决的思路是把这个图片旋转回来,至于如何判断转多少度,可以通过opencv来处理。通过膨胀和腐蚀将其变为如图。

详解利用python识别图片中的条码(pyzbar)及条码图片矫正和增强

接着再用cv2.minAreaRect函数,这个函数会返回如下,

详解利用python识别图片中的条码(pyzbar)及条码图片矫正和增强

里面的第三个-45就是我们需要的角度。

综合起来的实现代码,我就放在下面了。(我自己写的,如果有帮到你,快点关注和赞)

import cv2
import pyzbar.pyzbar as pyzbar
import numpy as np

def barcode(gray):
  texts = pyzbar.decode(gray)
  if texts == []:
    angle = barcode_angle(gray)
    if angle < -45:
      angle = -90 - angle
    texts = bar(gray, angle)
  if texts == []:
    gray = np.uint8(np.clip((1.1 * gray + 10), 0, 255))
    angle = barcode_angle(gray)
    #西瓜6写的,转载需声明
    if angle < -45:
      angle = -90 - angle
    texts = bar(gray, angle)
  return texts

def bar(image, angle):
  gray = image
  #西瓜6写的,转载需声明
  bar = rotate_bound(gray, 0 - angle)
  roi = cv2.cvtColor(bar, cv2.COLOR_BGR2RGB)
  texts = pyzbar.decode(roi)
  return texts


def barcode_angle(image):
  gray = image
  #西瓜6写的,转载需声明
  ret, binary = cv2.threshold(gray, 220, 255, cv2.THRESH_BINARY_INV)
  kernel = np.ones((8, 8), np.uint8)
  dilation = cv2.dilate(binary, kernel, iterations=1)
  erosion = cv2.erode(dilation, kernel, iterations=1)
  erosion = cv2.erode(erosion, kernel, iterations=1)
  erosion = cv2.erode(erosion, kernel, iterations=1)
  
  contours, hierarchy = cv2.findContours(
    erosion, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
  if len(contours) == 0:
    rect = [0, 0, 0]
  else:
    rect = cv2.minAreaRect(contours[0])
  return rect[2]

def rotate_bound(image, angle):
  (h, w) = image.shape[:2]
  (cX, cY) = (w // 2, h // 2)

  M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)
  cos = np.abs(M[0, 0])
  sin = np.abs(M[0, 1])
  #西瓜6写的,转载需声明
  nW = int((h * sin) + (w * cos))
  nH = int((h * cos) + (w * sin))

  M[0, 2] += (nW / 2) - cX
  M[1, 2] += (nH / 2) - cY

  return cv2.warpAffine(image, M, (nW, nH))

image=cv2.imread("/Users/phoenix/Downloads/barcode_455.png")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
texts = barcode(gray)
print(texts)
if texts==[]:
  print("未识别成功")
else:
  for text in texts:
    tt = text.data.decode("utf-8")
  print("识别成功")
  print(tt)

条码是模糊的是否会影响识别?

会的,处理方法就是传统的调对比度,锐化。。。。
不过这个只能解决部分部分,至于有的条码,微信可以扫,支付宝可以扫,但是我们识别不了,这个也不能怪库不好,这部分该放弃就放弃吧。

结束语

如果你想用python来解决图像里的条码识别问题,这篇文章肯定是可以帮到你的。到此这篇关于详解利用python识别图片中的条码(pyzbar)及条码图片矫正和增强的文章就介绍到这了,更多相关python识别图片条码内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

标签:
python识别图片条码,python,图片条码

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。