我就废话不多说了,大家还是直接看代码吧~
import matplotlib.pyplot as plt import numpy as np def sigmoid(x): # 直接返回sigmoid函数 return 1. / (1. + np.exp(-x)) def plot_sigmoid(): # param:起点,终点,间距 x = np.arange(-8, 8, 0.2) y = sigmoid(x) plt.plot(x, y) plt.show() if __name__ == '__main__': plot_sigmoid()
如图:
补充知识:python:实现并绘制 sigmoid函数,tanh函数,ReLU函数,PReLU函数
如下所示:
# -*- coding:utf-8 -*-
from matplotlib import pyplot as plt
import numpy as np
import mpl_toolkits.axisartist as axisartist
def sigmoid(x):
return 1. / (1 + np.exp(-x))
def tanh(x):
return (np.exp(x) - np.exp(-x)) / (np.exp(x) + np.exp(-x))
def relu(x):
return np.where(x<0,0,x)
def prelu(x):
return np.where(x<0,0.5*x,x)
def plot_sigmoid():
x = np.arange(-10, 10, 0.1)
y = sigmoid(x)
fig = plt.figure()
# ax = fig.add_subplot(111)
ax = axisartist.Subplot(fig,111)
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
# ax.spines['bottom'].set_color('none')
# ax.spines['left'].set_color('none')
ax.axis['bottom'].set_axisline_style("-|>",size=1.5)
ax.spines['left'].set_position(('data', 0))
ax.plot(x, y)
plt.xlim([-10.05, 10.05])
plt.ylim([-0.02, 1.02])
plt.tight_layout()
plt.savefig("sigmoid.png")
plt.show()
def plot_tanh():
x = np.arange(-10, 10, 0.1)
y = tanh(x)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
# ax.spines['bottom'].set_color('none')
# ax.spines['left'].set_color('none')
ax.spines['left'].set_position(('data', 0))
ax.spines['bottom'].set_position(('data', 0))
ax.plot(x, y)
plt.xlim([-10.05, 10.05])
plt.ylim([-1.02, 1.02])
ax.set_yticks([-1.0, -0.5, 0.5, 1.0])
ax.set_xticks([-10, -5, 5, 10])
plt.tight_layout()
plt.savefig("tanh.png")
plt.show()
def plot_relu():
x = np.arange(-10, 10, 0.1)
y = relu(x)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
# ax.spines['bottom'].set_color('none')
# ax.spines['left'].set_color('none')
ax.spines['left'].set_position(('data', 0))
ax.plot(x, y)
plt.xlim([-10.05, 10.05])
plt.ylim([0, 10.02])
ax.set_yticks([2, 4, 6, 8, 10])
plt.tight_layout()
plt.savefig("relu.png")
plt.show()
def plot_prelu():
x = np.arange(-10, 10, 0.1)
y = prelu(x)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
# ax.spines['bottom'].set_color('none')
# ax.spines['left'].set_color('none')
ax.spines['left'].set_position(('data', 0))
ax.spines['bottom'].set_position(('data', 0))
ax.plot(x, y)
plt.xticks([])
plt.yticks([])
plt.tight_layout()
plt.savefig("prelu.png")
plt.show()
if __name__ == "__main__":
plot_sigmoid()
plot_tanh()
plot_relu()
plot_prelu()
以上这篇Python3 用matplotlib绘制sigmoid函数的案例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
暂无“Python3 用matplotlib绘制sigmoid函数的案例”评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新动态
2025年10月26日
2025年10月26日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]
